Выбрать главу

Оглядываясь назад с высоты сегодняшней науки, можно, таким образом, проследить истоки союза геометрической и волновой оптики очень далеко и отнести рождение квазиоптики к первой половине прошлого века.

Более того, на заре волновой оптики великий Гюйгенс, не придя еще к представлению о свете как о периодических волнах, рисовал картину волновых фронтов и таким путем не только получил законы отражения и преломления, но строил форму поверхностей зеркал и линз. При этом он пользовался циркулем и линейкой, так что оптику Гюйгенса следовало бы называть «геометрической оптикой», а не волновой. Но обычай сильнее логики.

Все величие Гюйгенса, сочетавшего в себе мощь теоретика со стремлением к немедленному получению практических результатов, видно из следующего отрывка, начинающего шестую главу его «Трактата о свете».

«После того как я объяснил, как вытекают свойства отражения и преломления прозрачных и непрозрачных тел из наших предположений о природе света, я дам здесь весьма простой и естественный способ, позволяющий из тех же самых принципов вывести правильные формы для тел, которые посредством отражения или преломления собирают или соответственно желанию рассеивают лучи света. Правда, я еще не вижу, чтобы было можно пользоваться этими формами для преломления, с одной стороны, вследствие трудности придать с требуемой точностью нужную форму стеклам зрительной трубки, а с другой — потому, что в самом преломлении заключается одно свойство, которое, как это хорошо было доказано с помощью опытов Ньютоном, препятствует совершенно правильному соединению лучей. Все же я приведу здесь исследование этих форм, так как оно напрашивается здесь, так сказать, само собой и так как то согласие, которое здесь обнаруживается между лучом преломленным и отраженным, еще раз подтверждает нашу теорию преломления. Кроме того, может случиться, что для них в будущем будут открыты полезные применения, еще неизвестные теперь».

Дальше, простыми построениями Гюйгенс находит форму фокусирующего зеркала — параболу и получает главные свойства линз, в том числе и ранее установленные Декартом.

В приведенном отрывке содержатся две мысли, характерные для склада ума автора. Он сознавал, что точность его геометрических построений выше практических возможностей того времени. Впрочем, он достиг в шлифовке стекол высшего искусства, своими руками изготовил телескопы огромных для того времени размеров.

Второе замечание относится к Ньютону и его опытам по дисперсии. Гюйгенс безоговорочно принял ошибочный вывод Ньютона о том, что дисперсия света «препятствует совершенно правильному соединению лучей».

Впрочем, заблуждение Ньютона и Гюйгенса продержалось в науке еще много лет, пока скромный оптик Доллонд не уничтожил препятствие, казавшееся им непреодолимым. В результате многолетних трудов ему удалось достигнуть цели и, соединив линзу, изготовленную из кронгласа, с линзой из флинтгласа, получить изображение, не испорченное радужными цветами, смазывающими в обычных линзах границы изображения. Доллонд нашел форму поверхностей, при которых искажения, вносимые обеими линзами, противоположны и хорошо компенсируют друг друга.

Волновая теория света в принципе способна справиться с расчетами любых оптических приборов. Но во многих случаях необходимые вычисления оказываются чрезвычайно сложными и очень громоздкими. Могучая волновая оптика требует от ученого огромных усилий там, где примитивная геометрическая оптика указывает простой и короткий путь.

Математики не могли оставить без внимания эту странную ситуацию. Им удалось выяснить, в чем здесь дело. Оказывается, в случаях, когда размеры оптических приборов — размеры линз или зеркал, призм или диафрагм и расстояния между ними — много больше длины световых волн, законы геометрической оптики являются простым математическим следствием волновой природы света. Только более сложные проблемы, о которых уже упоминалось выше, — вопрос о минимальном расстоянии, на котором изображения двух близких точек не сливаются в одну, и некоторые другие — требуют проведения точных вычислений на основе волновой теории.

С тех пор в науке и технике, в оптике и ее многочисленных применениях возник отчетливый рубеж. По одну его сторону располагаются задачи, доступные геометрической оптике, решать которые волновыми методами столь же нелепо, как излагать стихами поваренную книгу. По другую его сторону находятся более сложные проблемы, требующие применения всего арсенала современной оптики. Всякая попытка недоучек перенести методы геометрической оптики за эту границу, в область, где пренебрегать волновыми свойствами света нельзя, приводит к нелепостям, к кажущимся парадоксам, при помощи которых молодые преподаватели любят смущать юных студенток. Имеется, однако, приграничная полоса, в нее с трудом проникают приверженцы крайностей. Это зона компромисса. О ней позже.

Рядом с границей