Такое упрощение озадачивает многих и кажется чуть ли не возвращением Галилея к временам до Птолемея, когда считалось, что все небесные движения — чисто круговые и равномерные. Ведь и у Птолемея и у Коперника планетные орбиты не круговые: в обеих системах использовались дополнительные малые сферы — эпициклы — для описания движения планет. Особенно смущает, что Галилей проигнорировал главное открытие Кеплера, с которым тот вошел в историю, — три элегантных закона планетных движений, основанные на многочисленных и высокоточных наблюдениях, сделанных Тихо Браге и его помощниками.
Разыскивая гармонию в планетных движениях, Кеплер опирался на тот же — астроматематический — способ мышления, которым он в юности «разгадал» космографическую тайну расположения планет. В множестве астрономических наблюдений Кеплер искал скрытую там, как он верил, математическую стройность мироздания. Но если первую тайну, оказавшуюся миражом, 25-летний Кеплер «раскрыл» вдохновенным быстрым натиском, то на поиски трех законов Кеплера ушли многие годы.
Перед ним были длинные колонки цифр — обширнейшие данные астрономических наблюдений, а он неустанно искал математическую закономерность за этими сухими цифрами. Он знал, что орбиты овальны, но в математике есть разные овалы. Восемь лет гипотез и проверок привели его к тому, что форма орбиты — эллипс. Окружность описывается одним числом — расстоянием от ее точек до центра, а эллипс — двумя: расстоянием между двумя центрами-фокусами и постоянной суммой расстояний от его точек до фокусов. Чем меньше расстояние между фокусами, тем эллипс ближе к окружности. Это легко понять, если круг рисовать не циркулем, а, привязав шнур двумя концами к гвоздику на плоскости, натянуть полученную петлю карандашом и вести линию. Эллипс получится, если вести линию, привязав шнур к двум разным гвоздикам.
Первые два закона Кеплера утверждают, что орбита — эллипс, в одном из фокусов которого — Солнце, и что скорость планеты тем больше, чем она ближе к Солнцу. В 1609 году Кеплер опубликовал эти законы в книге «Новая астрономия» и послал ее Галилею. Тот не отозвался ни словом.
Что это значит? Ведь, в отличие от «космографических» многогранников, угаданных в шести числах, новые закономерности Кеплера основаны на самых обширных и точных наблюдениях того времени. А обнаруженное математическое изящество разве не доказывало правильность солнечной идеи Коперника? Ведь орбиты эллиптичны, лишь если смотреть на планеты с солнечной точки зрения.
В текстах Галилея нет прямого ответа на эти вопросы. Ответ можно предложить, опираясь на его слова о «совсем разных способах мышления» его и Кеплера.
Галилей не просто знал и ценил математику, он верил, что наука
написана в великой книге Вселенной — книге, постоянно открытой нашему взору, но понять ее может лишь тот, кто научится понимать ее язык. Написана эта книга на языке математики, и буквы ее — треугольники, круги и другие геометрические фигуры, без помощи которых человек не понял бы в ней ни слова, блуждая в потемках по лабиринту.
Однако в математике Галилей видел лишь инструмент познания. Стремился же он понять содержание книги Вселенной, и прежде всего узнать, на каком фундаменте Мироздание стоит. Для этого от математики требуется не элегантность или изощренность, а помощь в изобретении физических понятий и в проведении придуманных экспериментов.
Эйнштейн: «Галилей — отец современной физики и, по сути, всего современного естествознания». «Все надо делать как можно проще, но не проще, чем надо». «Господь изощрен, но не злонамерен».
Разумеется, Галилей знал, что некоторые планетные орбиты — не круговые. Но знал он и то, что другие — почти круговые. Значит, для исследования физического фундамента астрономии круговая орбита — разумное упрощение. Подобным образом, в поисках закона свободного падения, Галилей упростил ситуацию, устранив сопротивление воздуха. Об этом же заповедь Эйнштейна: «Все надо делать как можно проще, но не проще, чем надо». Так мыслят физики.
Да, этим способом и своей моделью планетного движения Галилею не удалось создать теорию приливов — явление оказалось дальше от фундамента, чем он полагал. Но эта творческая неудача окупилась «побочными продуктами» исследования — принципом относительности и ключевым понятием ускорения.