Методы выделения ДНК, разработанные Мейером и Фу, стали фундаментом революции древней ДНК и ее успеха. В 1990-х молекулярные биологи научились использовать технику лазерного травления электронных схем в своих задачах: прикреплять к стеклянным или кремниевым пластинам миллионы нужных, прицельно выбранных кусочков ДНК. Эти кусочки ДНК можно затем снимать с пластины специальными молекулярными ножницами (ферментами) в водный раствор. С помощью этого метода Мейер и Фу синтезировали пятидесятидвухбуквенные фрагменты ДНК, которые перекрывали друг дружку концами, подобно черепице на крыше. Получилась почти полная последовательность 21-й человеческой хромосомы. Затем они использовали свойство ДНК спариваться с двойниковыми последовательностями: спаривая искусственно синтезированную “наживку” с кусочками ДНК в растворе, они выловили из экстрактов схожие с “наживкой” фрагменты ДНК. В улове, как выяснилось, находились в основном фрагменты ДНК тяньюаньца. Именно они и были нужны для исследования. Их анализ показал, что тяньюанец был представителем ранних современных людей, той их части, которая привела к современным восточным азиатам. В геноме этого человека оказалось не так уж много следов архаичных линий, сотни тысяч лет назад отделившихся от ветви современного человека. Это противоречило прежним утверждениям, основанным на сравнении формы скелетов17.
Все эти технологии мы с Роланд приспособили для чтения полных геномов. Вместе с коллегами из Германии мы синтезировали пятидесятидвухбуквенные фрагменты ДНК, покрывающие в сумме более миллиона нуклеотидных позиций; и это те позиции, в которых, как мы знаем, у людей имеются те или иные вариации. С помощью этой “наживки” мы выискивали интересующую нас человеческую ДНК в древних образцах, количество которой в некоторых случаях в сотни раз меньше по сравнению с микробной ДНК. Помимо того, нам удалось на порядок увеличить эффективность поисковых действий: мы просто решили, что весь геном читать не обязательно, а обязательны только информативные фрагменты с вариабельными позициями. Весь процесс автоматизировали с помощью подключения роботов, и в итоге один человек мог за несколько дней проанализировать более девяноста образцов. Наши лаборанты растирали образцы древних костей, готовили из них порошок, из которого затем делали вытяжки ДНК и препараты, пригодные для секвенирования. Но вся эта лаборантская работа являлась лишь начальным этапом. За ним следовала не менее хитроумная задача – рассортировать миллиарды кусочков ДНК по принадлежности к тому или иному индивиду, проанализировать информацию и выявить фрагменты с признаками загрязнений, а оставшиеся фрагменты скомпоновать в удобную базу данных. И все это выполняли компьютерные программы, которые разработал Шоп Маллик, пришедший в мою лабораторию за шесть лет до старта проекта; он постоянно настраивал эти программы в соответствии с новыми методическими приемами и новыми данными – новыми и по качеству, и по масштабу.
Результаты оказались даже лучше, чем мы могли надеяться. Стоимость прочтения генома упала до пяти сотен долларов за образец. А это в десятки раз меньше, чем обычное, в лоб, полногеномное секвенирование. И, что важнее, наш метод позволял считывать значительную часть ДНК-последовательности примерно у половины скелетных образцов, поступавших к нам для изучения, хотя, естественно, вероятность успеха сильно зависела от сохранности образца. Так, для ископаемых образцов из холодных зон России вероятность прочтения ДНК составляла около 75 %, а из жаркого климата Ближнего Востока – лишь 30 %.
Что это нам давало? А вот что: теперь для прочтения полного генома вовсе не обязательно перебирать большое число костных образцов, чтобы найти тот единственный, чья ДНК поддается анализу. Теперь можно получать общегеномные характеристики для подавляющего числа остатков, возраст которых находится в пределах последних 10 тысяч лет. А с такими данными события в популяциях реконструируются с изумительной детализацией, которая буквально переворачивает наше представление о прошлом.