Выбрать главу

Почему для развития нанотехнологий так важны эти приборы? Дело в том, что если в электронный микроскоп атомарные размеры можно рассмотреть лишь при определенных условиях, то новые зонды дают более точную картину. Причем слово «микроскоп» здесь вводит в заблуждение. Благодаря этому изобретению стало возможным манипулирование мельчайшими частицами материи. Исследователи переносили атомы из одного места в другое и составляли из них всякие неприличные слова. На этой основе в начале 1990 года компания «XEROX» создала молекулярного робота, который способен вылавливать молекулы, проводить их через особую мембрану, а затем использовать получившиеся атомы для «художественного конструирования».

Хотя современная технология позволяет манипулировать отдельными атомами, но при этом выглядит довольно неуклюже: огромный прибор хватает атом и транспортирует его. Куда более продуктивным представляется путь, предложенный «крестным отцом нанотехнологий» Эриком Дрекслером в книге «Машины создания: Грядущая эра нанотехнологий» («Engines of Creation: The Coming Era of Nanotechnology», 1986). В ней этот американский инженер описал специальные наномашины, называемые «ассемблерами» и способные работать с атомами.

Дрекслер дает следующее определение: «Ассемблер – это молекулярная машина, которая может быть запрограммирована строить практически любую молекулярную структуру или устройство из более простых химических строительных блоков».

Итак, наномашины должны уметь захватывать атомы и соединять их между собой, причем не хаотично, а в соответствии с заданным алгоритмом.

О том, что такой проект может быть реализован со дня на день, сообщила группа исследователей из Нью-йоркского университета. Американский медицинский наноробот, введенный в организм человека, сможет самостоятельно передвигаться по кровеносной системе и очищать его от микробов или зарождающихся раковых клеток, а саму кровеносную систему – от отложений холестерина. Он сможет изучить, а затем и исправить характеристики тканей и клеток.

Профессор химии Надриан Симан, возглавляющий исследования, заявил, что пока удалось лишь ограничить движение наномашин в молекулярной среде, но в будущем его невидимые роботы станут полностью управляемыми. Ученые хотят запрограммировать молекулы так, чтобы те могли самоорганизоваться и объединяться с другими молекулами в более крупную структуру. При этом наномашина будет имеет две своеобразные «руки» – молекулы, которыми исследователи вроде бы научились управлять, но что-либо сделать (например, добавить в раствор определенный химикат) устройство пока не умеет: раствор воздействует одновременно на все молекулы.

Другой проект, нацеленный на создание первого наноробота – «NanoWalker» – разрабатывается на базе Лаборатории биотехнологий при Массачусетском технологическом институте под руководством Сильвина Мартеля.

Пока что механизмы, сконструированные в рамках этого проекта, нанороботами назвать нельзя – слишком уж они велики, размером с копеечную монету, – но ученые уверены, что в ближайшем будущем их размеры удастся уменьшить.

Управление роботами производится посредством инфракрасных датчиков, помещенных в их тела, – камера отслеживает местоположение роботов и направляет к месту выполнения задания. Некоторые крошечные машины оснащены микроскопами, позволяющими им получать и транслировать изображение атома, над которым предстоит потрудиться.

По словам Мартеля, нынешняя квалификация его подопечных только определяется. Уже созданы модели, которые теоретически могут использоваться в фармакологии и осуществлять синтез химических препаратов и лекарств.

Появились и более экзотические варианты наносистем. Так, прототипом роя наночастиц может стать «умная пыль» («Smart Dust»). Ее создала группа исследователей под руководством профессора химии и биохимии Майкла Сейлора из Университета Калифорнии в Сан-Диего.

«Эти пылинки – ключ к разработке роботов размером с песчинку, – говорит Сейлор. – В будущем можно будет создать миниатюрные устройства, передвигающиеся в крошечных средах, вроде вен или артерий, к определенным целям, обнаруживать там химические или биологические составы и передавать информацию о них во внешний мир… Такие устройства могли бы использоваться, чтобы контролировать чистоту питьевой или морской воды, обнаруживать опасных химических или биологических агентов в воздухе и даже находить и уничтожать поврежденные клетки в организме человека».