Связи и специфичность нейронов
Однако Дональду Хеббу все это не казалось убедительным. Хотя он и учился вместе с Лешли, но был независим в своих суждениях и начал развивать собственную теорию. Он подозревал, что важно, как работают специфические нейронные связи, и отказался от принципов действия массы и эквипотенциальности. Ранее он уже отверг идеи великого русского физиолога Ивана Петровича Павлова, который считал мозг одной большой рефлекторной дугой. Хебб верил, что поведение определяется деятельностью мозга и что нельзя отделять психологию организма от его биологии. Сегодня это общепринятая идея, но тогда она казалась необычной. В отличие от бихевиористов, считавших, что мозг просто реагирует на стимулы, Хебб понял, что мозг никогда не прекращает работать, даже в отсутствие стимулов. Пользуясь ограниченными данными о функциях мозга, известными в 1940-е годы, он стремился построить модель, которая бы учитывала этот факт.
Хебб, опираясь на результаты собственных исследований, начал с предположений, как это может происходить. В 1949 году вышла его книга под названием “Организация поведения: нейропсихологическая теория” – предвестник гибели строгого бихевиоризма, знаменующий собой возврат к прежним представлениям об исключительной важности взаимосвязи нейронов. Он писал: “Если аксон клетки А находится достаточно близко, чтобы возбудить клетку Б, и многократно или постоянно участвует в ее активации, какие-то процессы роста или метаболические изменения происходят в одной или обеих клетках, так что эффективность возбуждения клеткой А клетки Б возрастает”{7}. В разговорах между собой нейробиологи формулируют это так: “Нейроны, которые возбуждаются вместе, связываются вместе”. Этот принцип лежит в основе предположений Хебба о процессах обучения и памяти. Он предложил называть группу нейронов, которые возбуждаются вместе, клеточной ассамблеей. Нейроны ассамблеи могут продолжать активироваться и по окончании запускающего события. Хебб считал, что такое устойчивое сохранение эффекта – разновидность памяти, и полагал, что мышление есть последовательная активация разных ассамблей. Иными словами, Хебб указал на ключевое значение взаимодействия между нейронами. Это и сегодня остается центральной темой исследований нейронауки.
Хебб сосредоточил свое внимание на нейронных сетях и на том, как они работают, чтобы запоминать информацию. Хотя он не занимался вопросом возникновения таких сетей, из его теории следует, что мышление влияет на развитие мозга. К тому же в своих ранних экспериментах на крысах, результаты которых были опубликованы в 1947 году, Хебб показал, что опыт может влиять на обучение{8}. Он понимал, что его теория будет пересматриваться по мере появления новых данных, касающихся механизмов работы мозга, но его настойчивость в объединении биологии с психологией наметила путь, который чуть более чем через десять лет привел к появлению новой области нейронауки.
Постепенно стало понятно, что, как только информация усваивается и помещается на хранение, конкретные участки мозга используют ее разными, особыми способами. Тем не менее оставалось неясным, как возникают нейронные сети, – одним словом, как развивается мозг.
Основополагающая работа, послужившая фундаментом для современной нейронауки и подчеркнувшая важность специфичности нейронов, была сделана учеником Пола Вейсса, Роджером Сперри. Его завораживал вопрос о том, как возникают взаимосвязи между нейронами. Он скептически относился к тому, как Вейсс объяснял рост нервов – будто в формировании нейронных сетей главную роль играет функциональная активность. В 1938 году, когда Сперри начал свои исследования, против доктрины о функциональной пластичности нервной системы выступили двое врачей из Медицинской школы Университета Джонса Хопкинса – Фрэнк Форд и Барнс Вудолл. Они рассказали о своих пациентах, у которых функции не восстанавливались долгие годы, несмотря на регенерацию нервной ткани{9}. Сперри решил исследовать функциональную пластичность у крыс, наблюдая, как изменение нервных связей влияет на поведение. Он менял местами нервные связи между мышцами-антагонистами – сгибателями и разгибателями – на задних лапах крысы, что меняло движения голеностопного сустава на прямо противоположные, и смотрел, могут ли животные научиться правильно пользоваться конечностями, как это предсказывала теория функциональной пластичности Вейсса. К своему удивлению, Сперри обнаружил, что крысы никогда не приспосабливались к этим изменениям, даже после многих часов тренировок{10}. Например, когда они карабкались по лестнице, их задние лапы поднимались в тот момент, когда должны были опускаться, и наоборот. Он предполагал, что сформируются новые нейронные сети и нормальные функции восстановятся, но оказалось, что моторные нейроны не взаимозаменяемы. Далее он исследовал сенсорную систему, перенося нервы кожи с одной конечности крысы на другую. И снова животные путались в ощущениях: когда ударяли током правую лапу, они поднимали левую; когда на правой лапе возникала ранка, они лизали левую{11}. Моторная и сенсорная системы не обладали пластичностью. Увы, Вейсс неудачно выбрал тритона в качестве модели человека в своих экспериментах, ведь регенерация нервной системы наблюдается лишь у низших позвоночных, например у рыб, лягушек и саламандр. Сперри вернулся к идее, что рост нервных волокон и его остановка регулируются хемотаксисом (движением клеток навстречу определенным химическим веществам). Эту гипотезу в начале XX века впервые выдвинул Сантьяго Рамон-и-Кахаль, один из величайших нейробиологов всех времен.
7
Hebb D. O. (1949)
8
Hebb D. O. (1947)
9
Ford F. R., Woodall B. (1938)
10
Sperry R. (1939)
11
Sperry R. (1943)