— Я знаю места, где за такие опыты можно хорошо поплатиться, — сказал человек Ю.
— В общем-то так и случилось, но это уже отдельная история, — без особой охоты произнес мастер. — А не сыграть ли нам в кости? — неожиданно предложил он.
— Я бы сыграл, хотя у меня одна медь в карманах, — сказал солдат Аш.
— Будем играть медью, — сказал мастер, и они перебрались на корму лодки. Фа четвертый присоединился. А отшельник Хо (чернобородый) направился в каюту, где спал Хо рыжебородый, завернувшись в зеленое одеяло из верблюжьей шерсти.
Эф и Ю остались одни, и оказались совсем близко друг к другу.
35
Эф третий и человек Ю оказались одни на носу лодки и оказались совсем близко друг к другу.
Третий хотел что-нибудь сказать, а лучше — сделать, но промолчал и сидел,сложа руки.
Человек Ю сидел у левого борта почти напротив третьего. В какой-то момент он откинулся спиною назад в высокий борт, словно в кресло. То же сделал и третий — одновременно, как бы в зеркальном отражении воспроизводя движение тела человека. Так бывает, что двое чихнут одновременно, моргнут или еще что-нибудь. Кажется, лодка качнулась в тот момент, когда третий коснулся досок борта лопатками. Он почувствовал легкое головокружение, на миг потеряв ощущение своего тела. Что-то сместилось вокруг. Теперь он словно чувствовал поверх своего лица, как маску, круглое лицо человека Ю, его брови и скулы. Это должно было быть обманом чувств, но он видел — действительно видел — то, что должны были видеть глаза человека Ю, то есть ближний берег озера, к которому сам он сидел спиной, — песок, деревья и камни. Этот простой пейзаж был необыкновенно красив, словно освещенный каким-то новым, идущим извне, светом.
Лодку еще раз качнуло. Третий очнулся. Он посмотрел по ходу вперед и увидел черный выступающий из воды камень, хотя знал, что камня не может быть в глубокой воде.
Третий крикнул, привлекая внимание тех, кто был на корме. Препятствие заметили, игру в кости прервали. Фа взялся за рычаг руля, солдат повернул парус. Большое черное бревно — совсем не камень — прошло мимо борта. Вдоль бревна тянулась надпись пляшущими в волнах буквами, и каждый что-то прочел — кто глядя в упор, а кто — провожая взглядом.
36
«Здесь поворачивают направо», — прочел Эф третий на черном бревне, один конец которого тонул в волнах, а другой — поднимался.
«Правой дорогой идите, товарищи», — громко прочитал Фа четвертый.
«Пойдешь направо, песнь заводишь», — неуверенно пробормотал Бе пятый.
«Правый поворот, что он нам несет», — пропел человек Ю.
«Право руля», — скомандовал солдат, и тут же исполнил.
«И где в таком случае правда?» — произнес отшельник Хо, провожая взглядом бревно, черный конец которого то исчезал в волнах, то показывался.
37
— Возникает вопрос, — говорил пятый, — сколько форм существует у кубика, то есть форм настолько симметричных, что для каждых двух выбранных граней кубика его можно было повернуть таким образом, чтобы в новом положении он полностью совместился бы с самим собой, при этом первая из выбранных граней совместилась бы со второй. Таким образом все грани кубика оказались бы в определенном смысле равноправными, что служит залогом к тому, чтобы частота выпадения одной из них не опережала частоту выпадения другой. По моему мнению, именно это равноправие граней позволяет называть многогранник кубиком.
Перечисляя эти формы, во-первых назовем пять правильных многогранников: четырехгранник, шестигранник — уже нам знакомый, восьмигранник, двенадцатигранник и двадцатигранник. — Пятый раскрыл одну из своих тетрадей и показал рисунок.
Во-вторых, это многогранники, образованные двумя одинаковыми пирамидами, которые совмещены основаниями, — продолжал пятый. — Таким способом могут быть получены кубики с любым четным числом граней, большим шести. Кстати, уже известный нам правильный восьмигранник может быть отнесен к этому типу.
Теперь, если у описанного только что многогранника мы слегка повернем составляющие его пирамидки одну относительно другой и определенным образом отрегулируем граничную линию между пирамидками, то получим кубик, составленный как бы из двух розеток. Его гранями уже будут не треугольники, как в предыдущем случае, а четырехугольники. Примером такого кубика является наш старый знакомый — шестигранный кубик, который можем разложить на две розетки, каждая из трех четырехугольников-квадратов.