Свойства X- и Y-переносчиков поистине удивительны: они могут превращать кварки в лептоны и обратно, а также кварки в антикварки. Таким образом, X-и Y-частицы — это своеобразные лептокварки. Теперь стерлось различие между кварками и лептонами, которое существовало при низких температурах, и они выступают как различные проявления некой «сверхчастицы». Это исчезновение различия означает возникновение новой, более высокой симметрии — симметрии Великого объединения.
Мы помним, что рассмотренные нами до сих пор частицы (кроме X- и Y-бозонов) при температуре больше миллиона миллиардов градусов не имеют массы покоя. При температурах еще в тысячу миллиардов раз большей (температуре Великого объединения) уже все частицы, в том числе и Х- и Y-бозоны, не имеют массы покоя.
Кроме уже встречавшихся нам частиц, при этих температурах существует еще один набор хиггсовских частиц (отличный от того, с которым мы встретились ранее). С понижением температуры ниже температуры Великого объединения срабатывает уже знакомый нам хиггсовский механизм, приводящий к нарушению симметрии, на этот раз симметрии Великого объединения. Только здесь явления, подобные описанным нами ранее, происходят с этими новыми хиггсовскими частицами.
При температурах, больших температуры Великого объединения, хиггсовские частицы были свободными. С падением температуры образуется «конденсат» хиггсовского поля — новое низшее состояние системы, то есть еще одна разновидность вакуума. Это уже третья по счету.
Разные вакуумы, или лучше сказать разные «вакуумноподобные состояния», обладают разной плотностью энергии. Из-за образования хиггсовского «конденсата» X- и Y-бозоны (переносчики универсального взаимодействия) приобретают массу — они становятся сверхтяжелыми. Рождаться при низких температурах они не могут. Единое взаимодействие теперь расщепляется на сильное и электрослабое.
Итак, мы видели, что с повышением энергии, с повышением температуры разные виды взаимодействий, совсем непохожие в обычных условиях, приобретают схожие черты и сливаются в единое взаимодействие.
На наших глазах происходит осуществление великой научной мечты А. Эйнштейна — мечты об объединении всех сил природы. При энергиях Великого объединения сливаются воедино три силы: электромагнитная, слабая и сильная. Единственная сила, оставшаяся пока в стороне, — это гравитационная, действию которой подвергаются абсолютно все виды материи. Осталось немного — объединить при каких-то совсем сверхбольших температурах силу гравитации с уже объединенной универсальной силой Великого взаимодействия. Но этот последний шаг в теории оказался и самым трудным.
Прежде чем обратиться к современным попыткам теоретиков объединить силу гравитации с другими силами природы, давайте вспомним, что природа гравитационного поля, по существу, геометрическая — это кривизна пространства-времени. Добавим еще, что гравитационное поле, как и электромагнитное, в определенных условиях может проявлять квантовые свойства.
Известно, что квантами электромагнитного поля являются фотоны. А кванты гравитационного поля это гравитоны — пока еще не открытые гипотетические частицы — переносчики гравитационного взаимодействия. Они обладают целым спином, равным 2. Гравитоны, так же как и фотоны, не обладают массой покоя и всегда движутся со скоростью света.
А. Эйнштейн был глубоко убежден в том, что и природа электромагнитного поля также должна быть геометрической. Всю вторую половину жизни он посвятил попыткам найти геометрическое представление электромагнитного поля, которое, как он считал, определяет макроскопические свойства вещества. В его уравнениях тяготения с одной стороны стоят величины, описывающие кривизну пространства-времени (так называемый тензор кривизны), а с другой — источник тяготения, источник кривизны — величины, описывающие вещество и негравитационные поля (так называемый тензор энергии — импульса материи).
А. Эйнштейн верил, что такая двойственность должна быть чуждой и противоестественной для окончательной теории. Если слева в уравнениях стоят геометрические величины, то и справа должны быть величины той же геометрической, по существу, природы. А это значит, считал он, что описание вещества и полей должно быть геометрическим. Известный польский ученый Л. Инфельд вспоминает, как А. Эйнштейн ему сказал однажды: «…теория относительности опирается на две колонны. Одна из них — мощная и прекрасная, будто выточенная из мрамора. Это — тензор кривизны. Вторая — шаткая, словно соломенная. Это тензор энергии-импульса… Мы должны оставить эту проблему будущему».