Выбрать главу

Наблюдения, сделанные Ленардом в 1902 г., как указывал Эйнштейн в своей статье, не противоречили его теории. В самом деле, скорости фотоэлектронов не зависели от интенсивности световых лучей, а число их было пропорционально интенсивности. Что же касается зависимости энергии фотоэлектронов от частоты, то она была исследована лишь в 1912 г. Ричардсоном, Комптоном и в 1916 г. Милликеном. Последние классические эксперименты наряду с измерениями Милликеном элементарного заряда были удостоены Нобелевской премии.

К идее квантов Эйнштейна привел закон Вина, справедливый в области коротких волн. Ему казалось, как он писал год спустя, что «теория излучения Планка в известном смысле противостоит моей работе». Однако тщательный анализ закона Планка привел Эйнштейна к выводу, что формула Планка основана на гипотезе квантов. Этот вывод составляет содержание работы Эйнштейна 1906 г. «К теории возникновения и поглощения света». Здесь Эйнштейн показал, что в основе теории Планка лежит следующее утверждение: «Энергия элементарного резонатора может принимать только целочисленные значения, кратные величине (R/N) βν, энергия резонатора при поглощении и испускании меняется скачком, а именно на целочисленное значение, кратное величине (R/N) bv ».

Эйнштейн увидел кванты впервые именно там, где квантовая природа света выражена особенно отчетливо: в явлении фотоэффекта. Квантовый характер излучения для него был очевиден только в коротковолновой области спектра, в области применимости закона Вина. Лишь через год он понял, что кванты являются фундаментом закона Планка. Каприз исторического развития науки выразился в том, что кванты появились в физике там, где их труднее всего было увидеть, — в законе черного излучения. Эйнштейн шел к квантовой теории естественным путем и сразу понял необходимость введения квантовых представлений в теорию света. Для него сомнений Планка и других физиков, считавших гипотезу квантов временной, не существовало. Он ясно видел, что возникновение и поглощение света описывается квантовыми законами.

В работе 1906 г. Эйнштейн устанавливает количественные соотношения между рядом напряжений Вольта и пороговой частотой фотоэффекта. Это соотношение выражается формулой:

U=(R/A) βν

и для контактной разности потенциалов двух металлов, выраженной в вольтах, Эйнштейн получает следующее значение:

«В этой формуле, — пишет Эйнштейн, — содержится следующее, по крайней мере в общем и целом, справедливое утверждение: чем более электроположительным является металл, тем меньше низшая частота света, вызывающая фотоэффект».

В следующем, 1907 г. Эйнштейн применил идею квантов к теории теплоемкости. Теорема равномерного распределения энергии по степеням свободы в теории теплоемкости твердого тела приводит к закону Дюлонга и Пти, который Эйнштейн записывает в виде с = 3Rn, или с = 5,94n, где п — число атомов в молекуле. Эта формула не дает зависимости теплоемкости от температуры и не дает правильного значения теплоемкости для углерода (алмаза), бора и кремния. Эйнштейн, предположив, что молекула твердого тела является квантовым осциллятором со средней энергией

получил для удельной теплоемкости грамм-эквивалента выражение:

Таким образом, теплоемкость является функцией температуры. Она удовлетворяет закону Дюлонга и Пти только при комнатной температуре, при приближении к абсолютному нулю теплоемкость падает.

Этот вывод был экспериментально подтвержден работами Нернста и его учеников, в результате которых Нернст пришел к своему тепловому закону, названному третьим началом термодинамики. Вместе с тем оказалось, что основная предпосылка Эйнштейна о монохроматичности колебаний осциллятора неверна, и сам Эйнштейн, а также Дебай, Борн и Карман уточнили квантовую теорию теплоемкости. Но основное положение работы Эйнштейна, что энергия элементарного образования может принимать только

значения 0, (R/N)βν, 2(R/N)βν и т. д., т. е. энергия квантуется, осталось незыблемым. Эйнштейну принадлежит заслуга расширения идеи квантов на новые области, что показало ее фундаментальное значение в физике. В этом заключалась вторая важная черта научной революции в физическом миропонимании, не сразу принятая и осознанная физиками.

Ленинский анализ 'Новейшей революции в естествознании'

В 1909 г. вышла книга В. И. Ленина «Материализм и эмпириокритицизм» В. И. Ленин не был физиком и, написав эту книгу, выполнил важную партийную, политическую задачу, разоблачив антимарксистские взгляды, бытовавшие в годы реакции среди части русских социал-демократов. Непосредственным поводом к написанию работы послужил выход книги «Очерки по философии марксизма», составленной из статей В. А. Базарова, А В. Луначарского, А. А. Богданова и других авторов, называвших себя марксистами. На самом деле в книге излагалась не философия марксизма, а философия Маха, Авенариуса и других эмпириокритиков и эмпирионистов.