Выбрать главу

Результаты Жолио-Кюри поставили под угрозу закон сохранения энергии. В самом деле, если попытаться интерпретировать опыты Жолио-Кюри, исходя из наличия в природе только известных частиц: протонов, электронов, фотонов, то объяснение появления длиннопробежных протонов требует рождения в бериллии фотонов с энергией в 50 МэВ. При этом энергия фотона оказывается зависящей от вида ядра отдачи, используемого для определения энергии фотона.

Эту коллизию разрешил Чедвик. Он помещал бериллиевый источник перед ионизационной камерой, в которую попадали протоны, выбитые из парафиновой пластинки. Располагая между парафиновой пластинкой и камерой поглощающие экраны из алюминия, Чедвик нашел, что бериллиевое излучение выбивает из парафина протоны с энергией до 5,7 МэВ. Для сообщения протонам такой энергии фотон должен сам обладать энергией в 55 МэВ. Но энергия ядер отдачи азота, наблюдаемая при таком же бериллиевом излучении, оказывается равной 1,2 МэВ. Чтобы передать азоту такую энергию, фотон излучения должен иметь энергию по меньшей мере 90 МэВ. Закон сохранения энергии несовместим с фотонной интерпретацией бериллиевого излучения.

Чедвик показал, что все трудности снимаются, если предположить, что бе-риллиевое излучение состоит из частиц с массой, равной примерно массе протона, и нулевым зарядом. Эти частицы он назвал нейтронами. Чедвик опубликовал статью о своих результатах в «Трудах Королевского общества» за 1932 г. Однако предварительная заметка о нейтроне была опубликована в номере «Nature» от 27 февраля 1932 г. В дальнейшем И. и ф. Жолио-Кюри в ряде работ 1932-1933 гг. подтвердили существование нейтронов и их свойство выбивать протоны из легких ядер. Они установили также испускание нейтронов ядрами аргона, натрия и алюминия при облучении а-лучами.

Протонно-нейтронная модель ядра

28 мая 1932 г. советский физик Д. Д. Иваненко опубликовал в «Nature» заметку, в которой высказал предположение, что нейтрон является наряду с протоном структурным элементом ядра. Он указал, что такая гипотеза решает проблему азотной катастрофы. В самом деле, по этой гипотезе ядро азота состоит из 14 частиц —7 протонов и 7 нейтронов и, таким образом, подчиняется статистике Бозе, как это было показано в 1930 г. Разетти из исследований рамановского спектра. В июне 1932 г. с большой статьей о протонно-нейтронной модели ядра выступил В. Гейзенберг.

Однако протонно-нейтронная модель ядра была встречена большинством физиков скептически. Она, как казалось, противоречила испусканию электронов ядрами в р-распаде. Гейзенберг вспоминал в 1968 г., что за предположение об отсутствии электронов в ядре его «довольно сильно критиковали самые крупные физики». Ион справедливо заключал, что это показывает, «как на самом деле трудно отказаться от вещей, которые кажутся настолько очевидными, что принимаются априорно». В соответствии с терминологией Аристотеля очень трудно отказаться от «явного для нас» для «явного по природе».

Идея о строении ядер только из тяжелых частиц с трудом принималась физиками. Мысль о том, что электронов внутри ядра нет, была высказана Дираком еще в 1930 г., но была законсервирована. Открытие нейтрона многими рассматривалось как несущественное — просто открыто сложное образование протона и электрона, так думал еще Резерфорд. Простую картину мира, в которой фундаментальными «кирпичиками мироздания» были протон и электрон, никто не хотел усложнять введением новых частиц.

В сентябре 1933 г. в Ленинграде состоялась конференция по атомному ядру, в которой принимали участие и иностранные ученые, ф. Жолио (он тогда еще не носил двойной фамилии) сделал два доклада: «Нейтроны» и «Возникновение позитронов при материализации фотонов и превращение ядер». П. Дирак сделал доклад о теории позитрона; ф. Перрен — о моделях ядра. С докладом о модели ядра выступил и Д. Д. Иваненко. Он энергично защищал протонно-нейтронную модель, сформулировав основной тезис: в ядре имеются только тяжелые частицы. «Появление электронов, позитронов и пр., — говорил Иваненко, — следует трактовать как своего рода рождение частиц, по аналогии с излучением светового кванта, также не имевшего индивидуального существования до испускания из атома». Д.Д.Иваненко отверг идеи 1) сложной структуре нейтрона и протона. По его мнению, обе частицы «должны, по-видимому, обладать одинаковой, степенью элементарности» т. е. и нейтрон и протон, обе элементарные частицы, могут переходить друг в друга, испуская электрон или позитрон. В дальнейшем протон и нейтрон стали рассматриваться как два состояния одной частицы — нуклона, и идея Иваненко стала общепринятой.