Выбрать главу

§ 12. Зависимость высоты полюса мира от географической широты места наблюдения

Вращение небесного свода - явление кажущееся и представляет собой следствие действительного вращения Земли вокруг оси в направлении, противоположном суточному вращению неба, т.е. с запада на восток. Поэтому в какой бы точке на поверхности Земли наблюдатель ни находился, он всегда видит вращение небесной сферы происходящим вокруг оси мира - прямой, параллельной оси вращения Земли. Направление же отвесной линии меняется при перемещении наблюдателя по земной поверхности и составляет различные углы с осью вращения. Взаимное расположение кругов и точек небесной сферы, связанных с осью мира и с отвесной линией, зависит, следовательно, от направления последней, т.е. от положения наблюдателя на поверхности Земли. Эта зависимость формулируется в виде следующей теоремы: "высота полюса мира hP над горизонтом всегда равна астрономической широте ср места наблюдения". Доказательство теоремы следует непосредственно из чертежа (рис. 6), где ÐPON = hP и ÐOTq = j - углы с взаимно перпендикулярными сторонами. Как следствие этой теоремы, астрономической широте места наблюдения j равны также (рис. 7): 1) склонение зенита d Z = j; 2) полярное расстояние точки севера рN = j ; 3) зенитное расстояние верхней точки экватора zQ = j.

На основании соотношения (1.1) зенитное расстояние полюса мира zP = 90° - hP = 90° - j. Следовательно, величине (90° - j) равны также: 1) полярное расстояние зенита pZ = 90° - j; 2) склонение точки севера hQ = 90° - j; 3) высота верхней точки экватора hQ = 90° - j.

§ 13. Явления, связанные с суточным вращением небесной сферы

а) Восход и заход светил. Вследствие суточного вращения небесной сферы все светила описывают круги, плоскости которых параллельны плоскости небесного экватора, т.е. они движутся по суточным, или небесным параллелям. В зависимости от географической широты j места наблюдения и от склонений d светил суточные параллели последних либо пересекают математический горизонт в двух точках, либо целиком располагаются над ним, либо под ним (рис. 8). Точка пересечения светилом восточной части истинного горизонта называется точкой восхода светила, точка пересечения западной части истинного горизонта - точкой захода светила. Светило восходит и заходит на данной широте j , если абcолютное значение его склонения

|d | < (90° - | j |).(1.4)

Если светило находится на небесном экваторе QQ', т.е. его d = 0, то оно восходит точно в точке востока Е и заходит точно в точке запада W. Если склонение светила d > 0 (небесная параллель аа), то оно восходит на северо-востоке, а заходит на северо-западе. Если склонение светила d < 0 (небесная параллель bb), то оно восходит на юго-востоке, а заходит на юго-западе. Наконец, если абсолютное значение склонения светила

|d | ³ (90° - | j |),(1.5)

то его суточная параллель не пересечет математического горизонта и оно будет либо незаходящим (суточная параллель ll располагается целиком над горизонтом) либо невосходящим светилом (суточная параллель kk располагается целиком под горизонтом).

Если наблюдатель находится на земном экваторе (j = 0°), то для него согласно условию (1.4) все светила являются восходящими и заходящими. Действительно, на земном экваторе (рис. 9) северный полюс мира Р лежит на горизонте, в точке севера N, а южный полюс Р’ - в точке юга S. Небесный экватор QQ' перпендикулярен к математическому горизонту и проходит через зенит Z. Поэтому и плоскости суточных параллелей всех светил также перпендикулярны к плоскости математического горизонта. Следовательно, все светила восходят и заходят, видны над горизонтом в течение 12 часов и столько же часов не видны. Если наблюдатель находится на северном географическом полюсе Земли (j = +90°), то для него согласно условию (1.5) светила, имеющие d > 0, являются незаходящими, а светила с d < 0 - невосходящими. Действительно (рис. 10), на северном географическом полюсе Земли северный полюс мира Р совпадает с зенитом Z, а небесный экватор QQ' - с математическим горизонтом. Поэтому плоскости суточных параллелей светил параллельны плоскости математического горизонта, и светила не восходят и не заходят. Светила северного полушария небесной сферы (d > 0) всегда видны над горизонтом, а светила южного полушария небесной сферы (d < 0) никогда не видны. Нетрудно сообразить, что наблюдатель, находящийся на южном полюсе Земли, наоборот, всегда будет видеть светила южного полушария небесной сферы (d < 0) и никогда не увидит светил северного полушария небесной сферы (d > 0).

Если наблюдатель находится на широте j , отличной от 0° и от 90°, то часть светил будет для него являться восходящими и заходящими, а часть - невосходящими и незаходящими. б) Кульминации светил. Суточная параллель каждого светила пересекает небесный меридиан в двух точках, лежащих на концах диаметра параллели. Явление пересечения светилом небесного меридиана называется кульминацией светила. Кульминация называется верхней, если светило пересекает верхнюю часть PZQSP' небесного меридиана, содержащую Z (рис. 7), и нижней, если светило пересекает нижнюю часть небесного меридиана PNQ'Z'P', содержащую Z'. Различают верхнюю кульминацию к югу от зенита (на дуге ZQSP') и к северу от зенита (на дуге PZ). У светил, не заходящих на данной широте j , доступны для наблюдений обе кульминации - и верхняя и нижняя; у восходящих и заходящих светил - только верхняя, нижняя кульминация происходит под горизонтом; у невосходящих светил обе кульминации недоступны наблюдениям, так как происходят под горизонтом.

§ 14. Изменение координат светил при суточном движении

Когда светило восходит или заходит, то его z = 90°, h = 0°, а азимуты точек восхода и захода зависят от склонения светила и широты места наблюдения. В момент верхней кульминации зенитное расстояние светила минимально, высота максимальна, а азимут А = 0 (если светило кульминирует к югу от зенита), или A = 180° (если оно кульминирует к северу от зенита). В момент нижней кульминации зенитное расстояние светила принимает максимальное значение, высота - минимальное, а азимут А = 180°, или А = 0° (если нижняя кульминация происходит между надиром Z' и южным полюсом мира Р'). Следовательно, от нижней кульминации до верхней зенитное расстояние светила уменьшается, а высота увеличивается; от верхней до нижней кульминации, наоборот, зенитное расстояние увеличивается, высота уменьшается. При этом азимут светила также меняется в определенных пределах. Таким образом, горизонтальные координаты светила (z, h и A) непрерывно изменяются вследствие суточного вращения небесной сферы, и если светило неизменно связано со сферой (т.е. его склонение d и прямое восхождение a остаются постоянными), то его горизонтальные координаты принимают свои прежние значения, когда сфера совершит один оборот. Так как суточные параллели светил на всех широтах Земли (кроме полюсов) наклонены к горизонту, то горизонтальные координаты изменяются неравномерно даже при равномерном суточном вращении небесной сферы. Высота светила h и его зенитное расстояние z наиболее медленно меняются близ меридиана, т.е. в момент верхней или нижней кульминаций. Азимут же светила A, наоборот, в эти моменты изменяется наиболее быстро. Часовой угол светила t (в первой экваториальной системе координат), подобно азимуту A, непрерывно меняется. В момент верхней кульминации светила его t = 0. В момент нижней кульминации часовой угол светила t = 180° или 12h. Но, в отличие от азимутов, часовые углы светил (если их склонения d и прямые восхождения a остаются постоянными) изменяются равномерно, так как они отсчитываются по небесному экватору, и при равномерном вращении небесной сферы изменения часовых углов пропорциональны промежуткам времени, т.е. приращения часовых углов равны углу поворота небесной сферы. Равномерность изменения часовых углов имеет очень важное значение при измерении времени. Высота светила h или зенитное расстояние z в моменты кульминаций зависят от склонения светила d и широты места наблюдателя j. Непосредственно из чертежа (рис. 7) следует: 1) если склонение светила M1 d < j, то оно кульминирует к югу от зенита на зенитном расстоянии