§ 19. Звездные сутки. Звездное время
Промежуток времени между двумя последовательными одноименными кульминациями точки весеннего равноденствия на одном и том же географическом меридиане называется звездными сутками. За начало звездных суток на данном меридиане принимается момент верхней кульминации точки весеннего равноденствия. Время, протекшее от верхней кульминации точки весеннего равноденствия до любого другого ее положения, выраженное в долях звездных суток (в звездных часах, минутах и секундах), называется звездным временем s. Угол, на который Земля повернется от момента верхней кульминации точки весеннего равноденствия до какого-нибудь другого момента, равен часовому углу точки весеннего равноденствия в этот момент. Следовательно, звездное время s на данном меридиане в любой момент численно равно часовому углу точки весеннего равноденствия t^, выраженному в часовой мере, т.е.
s = t^. (1.14)
Точка весеннего равноденствия на небе ничем не отмечена. Непосредственно измерить ее часовой угол или заметить момент прохождения ее через меридиан нельзя. Поэтому практически для установления начала звездных суток или звездного времени в какой-либо момент надо измерить часовой угол t какого-либо светила М, прямое восхождение которого a известно (рис. 12).
Тогда, поскольку t = Qm, a = ^m, а часовой угол точки весеннего равноденствия t^ = Q ^ и, по определению, равен звездному времени s,
s = t^ = a + t, (1.15)
т.е. звездное время в любой момент равно прямому восхождению какого-либо светила плюс его часовой угол. В момент верхней кульминации светила его часовой угол t = 0, и тогда
s = a. (1.16)
В момент нижней кульминации светила его часовой угол t = 12h, и звездное время
s = a + 12h.(1.17)
Измерение времени звездными сутками и их долями наиболее просто и поэтому весьма выгодно при решении многих астрономических задач. Но в повседневной жизни пользоваться звездным временем крайне неудобно. Повседневный распорядок жизни человека связан с видимым положением Солнца над горизонтом, с его восходом, кульминацией и заходом, а не с положением фиктивной точки весеннего равноденствия. А так как взаимное расположение Солнца и точки весеннего равноденствия в течение года непрерывно меняется, то, например, верхняя кульминация Солнца (полдень) в разные дни года происходит в разные моменты звездных суток. Действительно, только раз в году, когда Солнце проходит через точку весеннего равноденствия, т.е. когда его прямое восхождение a = 0h, оно будет кульминировать вместе с точкой весеннего равноденствия в полдень, в 0h звездного времени. Через одни звездные сутки точка весеннего равноденствия снова будет находиться в верхней кульминации, а Солнце придет на меридиан приблизительно лишь через 4 минуты, так как за одни звездные сутки оно сместится к востоку относительно точки весеннего равноденствия почти на 1°, и его прямое восхождение будет уже равно a " 0h 4m. Еще через одни звездные сутки прямое восхождение Солнца снова увеличится на 4m, т.е. полдень наступит уже приблизительно в 0h 8m по звездному времени и т.д. Таким образом, звездное время кульминации Солнца непрерывно растет, и полдень наступает в различные моменты звездных суток. Неудобство совершенно очевидное.
§ 20. Истинные солнечные сутки. Истинное солнечное время
Промежуток времени между двумя последовательными одноименными кульминациями Солнца (точнее, центра солнечного диска) на одном и том же географическом меридиане называется истинными солнечными сутками. За начало истинных солнечных суток на данном меридиане принимается момент нижней кульминации Солнца (истинная полночь). Время, протекшее от нижней кульминации Солнца до любого другого его положения, выраженное в долях истинных солнечных суток (в истинных солнечных часах, минутах и секундах), называется истинным солнечным временем T¤. Истинное солнечное время T¤ на данном меридиане в любой момент численно равно часовому углу Солнца t¤, выраженному в часовой мере, плюс 12h, т.е.
T¤= t¤ + 12h(1.18)
Часовой угол Солнца, когда оно находится над горизонтом и не закрыто облаками, всегда можно измерить непосредственно. В момент верхней кульминации Солнца (в истинный полдень) t¤ = 0h, и следовательно, истинное солнечное время в полдень всегда равно 12 часам. Измерение времени истинными солнечными сутками просто, но пользоваться истинным солнечным временем в повседневной жизни так же неудобно, как и звездным. Неудобство возникает потому, что продолжительность истинных солнечных суток величина непостоянная. Величина запаздывания верхней (и нижней) кульминации Солнца относительно звездного времени (см. § 19) в разные дни года различна. Следовательно, различна и продолжительность истинных солнечных суток. Она была бы постоянной, если бы суточное приращение прямого восхождения Солнца было постоянным. Но этого нет (см. § 16) по двум причинам: 1) Солнце движется не по небесному экватору, а по эклиптике, наклоненной к небесному экватору на значительный угол e = 23° 27'. 2) Движение Солнца по эклиптике неравномерно. Вследствие первой причины продолжительности истинных солнечных суток была бы неодинаковой даже и в том случае, если бы Солнце перемещалось по эклиптике равномерно, т.е. если бы суточное приращение его долготы Dl было бы всегда одинаковым. Действительно, вблизи равноденственных точек равные дуги АВ = ВС = Dl эклиптики E E' (рис. 13, a), спроектированные на небесный экватор QQ', дают приращения Da прямого восхождения Солнца (ab, bc) меньше соответствующих отрезков эклиптики, т. е. Da < Dl . Вблизи точек солнцестояний, наоборот, приращения Da прямого восхождения Солнца (mk, kl на рис. 13,6) больше отрезков эклиптики MK = KL = Dl вследствие расхождения часовых кругов по мере их удаления от полюсов. Таким образом, здесь Da > Dl .
В результате действия обеих причин истинные солнечные сутки, например, 22 декабря, длиннее на 50-51 секунду, чем 23 сентября. Непостоянство продолжительности истинных солнечных суток не позволяет применять их для счета времени на практике.
§ 21. Средние солнечные сутки. Среднее солнечное время
Чтобы получить сутки постоянной продолжительности, и в то же время связанные с движением Солнца, в астрономии введены понятия двух фиктивных точек - среднего эклиптического и среднего экваториального солнца. Среднее эклиптическое солнце равномерно движется по эклиптике со средней скоростью Солнца и совпадает с ним около 3 января и 4 июля. Среднее экваториальное солнце равномерно движется по небесному экватору с постоянной скоростью среднего эклиптического солнца и одновременно с ним проходит точку весеннего равноденствия. Следовательно, в каждый момент времени прямое восхождение среднего экваториального солнца равно долготе среднего эклиптического солнца. Их же прямые восхождения одинаковы только четыре раза в году, а именно, в моменты прохождения ими точек равноденствий и в моменты прохождения средним эклиптическим солнцем точек солнцестояний. Введением среднего экваториального солнца, у которого суточные приращения Da прямого восхождения одинаковы, устраняется непостоянство продолжительности солнечных суток и неравномерность истинного солнечного времени. Промежуток времени между двумя последовательными одноименными кульминациями среднего экваториального солнца на одном и том же географическом меридиане называется средними солнечными сутками, или просто средними сутками. Из определения среднего экваториального солнца следует, что продолжительность средних солнечных суток равна среднему значению продолжительности истинных солнечных суток за год. За начало средних солнечных суток на данном меридиане принимается момент нижней кульминации среднего экваториального солнца (средняя полночь). Время, протекшее от нижней кульминации среднего экваториального солнца до любого другого его положения, выраженное в долях средних солнечных суток (в средних часах, минутах и секундах), называется средним солнечным временем или просто средним временем Tm . Среднее время Tm на данном меридиане в любой момент численно равно часовому углу tm среднего экваториального солнца, выраженному в часовой мере, плюс 12h, т.е.