u = a + T ’.(6.3)
Таким образом, чтобы определить поправку часов и (точное время), необходимо измерить часовой угол t какого-либо светила с известным прямым восхождением a и в момент измерения угла отметить показания часов T ’. Если отметить показания часов Т ' в момент верхней кульминации светила (t = 0), то поправка часов будет
u = а - Т '.(6.4)
Определение точного времени из наблюдений звезд в моменты их кульминаций наиболее распространенный метод решения этой задачи. б) Определение географической долготы l . Решение этой задачи основано на том, что разность местных времен на двух меридианах в один и тот же момент равна разности долгот этих меридианов, выраженной в часовой мере (см. § 24). В настоящее время географические долготы отсчитываются от гринвичского меридиана, долгота которого принята равной нулю. Следовательно, если Tm - местное время какого-либо меридиана с восточной долготой l от Гринвича, а Т0 - гринвичское время, то
l = Tm - T0 .(6.5)
Таким образом, определение долготы какого-либо пункта сводится к одновременному определению местного времени в данном пункте и местного времени на начальном меридиане. До изобретения радио решение такой задачи представляло значительные трудности. Главная из них заключалась в определении гринвичского времени Т0 . Старые методы определения долгот были и приближенными (гринвичское время определялось из наблюдений затмений Луны, покрытий звезд Луной, из наблюдений явлений в системе галилеевых спутников Юпитера) и очень трудоемкими (способ “перевозки хронометров”). Изобретение телеграфа несколько облегчило задачу, но и оно не сняло всех трудностей в этом вопросе. В современных методах определения долгот гринвичское время получается из приема сигналов точного времени по радио (см. § 84). Из приема радиосигналов до и после астрономических наблюдений вычисляется поправка часов и0 относительно гринвичского меридиана для того же момента, для которого из наблюдений получена поправка часов и0 относительно меридиана данного пункта. Тогда долгота пункта на основании соотношений (6.2) и (6.5) получится из уравнения
l = u - u0(6.6)
так как Тт = T ’ + u, а Т0 = T ' + u0 .
§ 86. Определение географической широты j и поправки часов и
а) Определение j и и по измеренным зенитным расстояниям светил. Решение этих двух задач основано на применении формулы (1.37) параллактического треугольника
cos z = sin j sin d + cos j cos d cos t,(6.7)
где t = s - a , или на основании (6.3):
t = T ' + u - a .(6.8)
Если измерено зенитное расстояние светила z или его высота h = 90° - z, и в момент измерения отмечен момент Т ' по звездным часам, а a и d светила взяты из Астрономического Ежегодника на момент наблюдения, то в уравнении (6.7) неизвестными остаются две величины: j и и. Следовательно, для их определения надо иметь второе такое же, но независимое уравнение, т.е. надо измерить зенитное расстояние по крайней мере еще одного светила и считать, что и за время наблюдения этих светил не меняется. Обычно так и поступают, когда производится совместное определение широты и поправки часов. При этом наблюдается не две, а несколько звезд, и полученные уравнения решают методом наименьших квадратов или методом последовательных приближений. Если же известна одна из этих величин, то вторую легко вычислить из уравнений (6.7) и (6.8). Пусть будет известна географическая широта j места наблюдения. Тогда из уравнения (6.7) получим откуда вычисляем t, а из уравнения (6.8) находим u = t - Т + a . Если известна поправка часов и, то из уравнения (6.7) вычисляется географическая широта j . Принципиально, для решения этих задач можно измерять зенитное расстояние любого светила, находящегося в любой точке неба над горизонтом. Однако для определения поправки часов и выгоднее измерять зенитные расстояния тех светил, которые в момент наблюдения находятся вблизи первого вертикала, т.е. у которых азимут близок к 90° или к 270°. В этом случае зенитные расстояния светил изменяются быстрее всего, и следовательно, момент наблюдения Т ' отмечается с большей точностью. Для определения географической широты j , наоборот, выгоднее измерять зенитные расстояния светил, находящихся вблизи меридиана. В этом случае их зенитные расстояния изменяются сравнительно медленно и тем самым возможная ошибка в отмеченном моменте Т ' мало повлияет на окончательный результат. С этой точки зрения очень выгодно наблюдать Полярную звезду, так как она всегда близка к меридиану и во всякое время удобна для точного определения широты места. Кроме того, ее высота над горизонтом всегда мало отличается от широты места наблюдения и может быть принята за приближенное значение этой величины с ошибкой, не превосходящей ±1°. б) Определение j и и из наблюдений в момент кульминации светил. Если светило находится в кульминации, то его часовой угол t равен 0 или 180° (12h). Тогда из формулы (6.7) следует:
1) если светило кульминирует к югу от зенита, то j = d + z, (6.9)
2) если к северу от зенита, то j = d - z,
3) если светило находится в нижней кульминации, то j = 180° - d - z.
Из уравнения (6.8) для момента
верхней кульминации u = a - T ’, (6.10)
нижней кульминации u = a - Т + 12h
Таким образом, по одному из уравнений (6.9) можно получить широту места j , измерив только зенитное расстояние светила, а из уравнений (6.10) можно найти поправку часов и, отметив только момент прохождения светила через меридиан. в) Определение j и и из наблюдений светил на равных высотах (равных зенитных расстояниях). Если для двух светил с прямыми восхождениями a 1 и a 2 и склонениями d 1 и d 2 отметить моменты Т1’ и T2’ их прохождения через общий альмукантарат, т.е. когда они находятся на одинаковом расстоянии z, то на основании (6.7) и (6.8) получим равенство
sin j sin d 1 + cos j cos d 1 cos (Т1’ + и - a 1) =
= sin j sin d 2 + cos j cos d 2 cos (Т2’ + и - a 2),
(6.11)
в котором неизвестными являются географическая широта места j и поправка часов и. Равенство (6.11) находит большое применение в различных способах как раздельного, так и совместного определения j и u. Существенным во всех этих способах является то, что отпадает необходимость измерения зенитных расстояний светил и все наблюдения сводятся к отметке моментов времени по часам при прохождении светил через какой-нибудь альмукантарат.
§ 87. Совместное определение географических координат j и l
Точка на поверхности Земли, для которой какое-либо светило в данный момент находится в зените, называется географическим местом этого светила. Широта j и долгота l географического места светила могут быть определены, если известны координаты светила a и d и звездное время в Гринвиче s0 в момент прохождения светила через зенит. Действительно, когда светило находится в зените, его z = 0, следовательно, широта географического места светила j = d . Но так как при этом светило наводится и в верхней кульминации, то его часовой угол t = 0, а местное звездное время на меридиане географического места светила s = a . Следовательно, долгота географического места светила l = a - s0 . Если наблюдатель находится на земной поверхности в точке О, не совпадающей с
географическим местом В светила М (рис. 64), то он видит светило в момент s0 на зенитном расстоянии z. (Лучи, идущие от светила ко всем точкам на Земле, можно считать параллельными.) Иными словами, наблюдатель находится от географического места светила на угловом расстоянии, равном зенитному расстоянию светила. Если считать Землю шаром, а отвесные линии совпадающими с радиусами Земли, то точки на поверхности Земли, для которых данное светило находится на зенитном расстоянии z, будут расположены на малом круге OO', сферический радиус которого ВО равен зенитному расстоянию z светила, а центр находится в точке В. Такой круг называется кругом равных высот или позиционным кругом.