s = a ¤= T’¤ + u(6.14)
будет известна также поправка часов и для каждого дня наблюдений и ход часов w (см. § 85). Таким образом, абсолютный метод определения прямых восхождений сводится к следующему. Выбирается несколько (например, 30-40) звезд, расположенных более или менее равномерно вдоль эклиптики и небесного экватора, настолько ярких, чтобы каждую из них можно было бы наблюдать и днем, до или после наблюдений Солнца. Такие звезды называются главными или часовыми. При наблюдении часовых звезд отмечаются моменты их прохождения через меридиан Т’1 , Т’2 , ..., Т’n . При наблюдении Солнца отмечается момент T’¤ его прохождения через меридиан и измеряется зенитное расстояние z¤. По измеренному зенитному расстоянию Солнца вычисляется его склонение d ¤ и прямое восхождение сто для каждого дня наблюдений в моменты его верхней кульминации. По уравнению (6.14) вычисляются поправки часов на моменты наблюдений Солнца, а по ним - ход часов. Далее, для каждого дня наблюдений Солнца и часовых звезд составляются следующие уравнения:
a ¤ = T '¤ + u.
(6.15)
a 1 = T '1 + u1,
a 2 = T '2 + и2 ,
……………..
a n = T’n + un.
В первом из этих уравнений известны все величины, в остальных - только моменты прохождений звезд через меридиан T 'i . Прямые восхождения часовых звезд a i , и поправки часов и, пока не известны. Но поправки часов u i , для моментов кульминации каждой часовой звезды легко найти через известные поправку и и ход часов w, а именно: u i = u + w (T’ i - T’¤) . Тогда уравнения (6.15) запишутся так:
a¤ = T’¤ + u,
a 1 = T '1 + u + w (T '1 - T'¤),
a 2 = T '2 + u + w ( T '2 - T'¤),
…………………………….
a n = T’n + u + w (T ’n - T’¤)
Из этих уравнений и определяются прямые восхождения Солнца и часовых звезд абсолютным методом. При этом выгоднее производить такие определения по наблюдениям, проведенным при небольших значениях абсолютной величины склонения Солнца, т.е. около дней весеннего и осеннего равноденствий. В этом случае прямые восхождения получаются точнее. При абсолютном методе определения прямых восхождений звезд наблюдения Солнца необходимы для фиксации положения точки весеннего равноденствия на небе относительно этих звезд. С этой целью вместо Солнца можно наблюдать любую планету Солнечной системы, если элементы ее орбиты известны с достаточной степенью точности. Наблюдения планет точнее, чем наблюдения Солнца. Особенно выгодны в этом отношении малые планеты. Условия наблюдений малых планет практически не отличаются от условий наблюдения звезд и поэтому результаты их наблюдений свободны от тех специфических ошибок, которые присущи наблюдениям больших планет и Солнца. б) Относительные или дифференциальные методы. Относительные определения координат звезд сводятся к измерению разностей координат Da и Dd определяемых и опорных звезд. Из наблюдений звезд в меридиане получают для каждой опорной и для каждой определяемой звезды моменты прохождения через меридиан T и Ti, и зенитные расстояния z и zi. Так как наблюдения производятся в меридиане, то разность моментов прохождений звезд, опорной (T) и определяемой (Ti ), после учета хода часов есть разность их прямых восхождений, т.е. Т - Ti = a - a i, = Da i, а разность зенитных расстояний есть разность склонений этих звезд, т.е. z - zi = d i - d = Dd i (кульминация к югу от зенита), г - zi = d - d i = Dd i (кульминация к северу от зенита). Из этих соотношений легко получаются искомые координаты a i и d i, определяемой звезды, так как a и d опорной звезды известны. Здесь мы изложили только принципы определения экваториальных координат; на практике дело обстоит значительно сложнее.
§ 91. Собственные движения звезд
Из сравнения экваториальных координат одних и тех же звезд, определенных через значительные промежутки времени, было обнаружено, что их прямые восхождения и склонения меняются с течением времени. Значительная часть этих изменений вызывается прецессией, нутацией, аберрацией и, в меньшей степени, годичным параллаксом (см. §§ 63, 69, 73). Если исключить влияние этих причин, то изменения уменьшаются, но не исчезают полностью. Оставшееся смещение звезды на небесной сфере за год называется собственным движением звезды m . Оно выражается в секундах дуги в год. Собственные движения у разных звезд различны по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1" в год. Самое большое известное собственное движение m = 10”,27 (у “летящей” звезды Барнарда). Громадное же большинство измеренных собственных движений у звезд составляют сотые и тысячные доли секунды дуги в год. Из-за малости собственных движений изменение видимых положений звезд не заметно для невооруженного глаза. В свое время это дало повод к возникновению термина “неподвижные звезды”. Однако за очень большие промежутки времени фигуры созвездий меняются весьма заметно. Например, на рис. 68 изображено взаимное расположение семи ярких звезд Большой Медведицы в настоящее время (б), 50 000 лет тому назад (a) и через 50 000 лет (в). Собственное движение каждой звезды происходит по дуге большого круга и с постоянной скоростью. Небольшие периодические отклонения от дуги большого круга в собственном движении замечены лишь у нескольких звезд. Вследствие собственного движения звезды m по дуге большого круга SS1 (рис. 69) прямое восхождение звезды изменяется на величину ma , называемую собственным движением по прямому восхождению, а склонение - на величину md , называемую собственным движением по склонению. Непосредственно из сравнения координат звезды определяются ma и md , выраженные в секундах дуги. Если же ma выражено в секундах
часовой меры (обозначается mas ), то ma = 15 m as cos d . Собственное же движение звезды m вычисляется по формуле Эта формула легко получается, если на рис. 69, вследствие малости собственного движения m , дугу суточной параллели звезды ma cos d , дугу круга склонения звезды md и дугу собственного движения звезды m считать прямыми линиями.
§ 92. Фотографическая астрометрия
Для исследования строения и развития Вселенной, и в первую очередь Галактики, необходимо знать положения (координаты и расстояния) и движения как можно большего числа объектов (в идеале всех), входящих в ее состав. Визуальные методы астрометрии позволяют получить координаты и собственные движения только для сравнительно ярких объектов, а расстояние - для объектов сравнительно близких (см. § 65). Получение этих характеристик для слабых и удаленных объектов до середины XIX в. практически было невозможно, Применение фотографии в астрономии вызвало развитие фотографических методов почти во всех ее разделах, в том числе и в астрометрии. Фотографический метод наблюдений для астрометрии ценен тем, что: 1) ему доступны объекты более слабые, чем наблюдаемые визуально; 2) на одном астронегативе одновременно получаются изображения большого числа звезд (до нескольких тысяч) и других небесных объектов, среди которых особый интерес представляют внегалактические туманности; 3) на фотографической пластинке фиксируется взаимное расположение небесных объектов некоторой области неба в определенный момент, что позволяет сохранить эту картину и для будущих исследований. Фотографические методы наблюдений в астрометрии применяются главным образом для определения относительных координат, собственных движений и относительных параллаксов небесных тел. Для определения относительных экваториальных координат фотографирование отдельных участков неба производится так, чтобы астронегативы располагались друг относительно друга перекрывающимися рядами, т. е. чтобы координаты одного и того же объекта можно было определить по двум пластинкам. Кроме того, на каждой пластинке должны быть изображения 15-25 опорных звезд, т.е. звезд, прямые восхождения и склонения которых известны. Тогда, измеряя на очень точных приборах взаимные расстояния опорных звезд и определяемых объектов, сначала находят их координаты в некоторой произвольной системе (обычно прямоугольной), а затем вычисляют сферические координаты объектов (прямое восхождение a и склонение d) с помощью известных a и d опорных звезд. Для определения собственных движений надо иметь по крайней мере два астронегатива одного и того же участка неба, фотографирование которого произведено через достаточный интервал времени (не менее 20-30 лет). При получении второй пластинки необходимо придерживаться по возможности таких же условий, при которых была получена первая пластинка. Специальные измерительные машины позволяют измерять разность прямоугольных координат изображений одного и того же объекта на двух пластинках, по которым затем можно вычислить собственные движения в системе принятых собственных движений опорных звезд. Для определения относительных параллаксов необходимо иметь три астронегатива одного и того же участка неба, полученные с полугодичными интервалами. Из изменений во взаимном расположении звезд на трех пластинках определяются параллаксы более близких звезд относительно более далеких. Относительный параллакс, конечно, получается меньше действительного, абсолютного, так как он является, по существу, разностью параллаксов близкой и далекой звезды. Несмотря на это, в последнее время определение параллаксов производится исключительно фотографическим методом. Практика показала, что гораздо легче и точнее можно измерить изменение во взаимном расположении звезд, чем обнаружить изменение их абсолютных координат. Фотографии для астрометрических целей получаются с помощью телескопов, называемых астрографами (см. § 110).