однородного” Солнца должны быть близки к реальному случаю в средней точке, на глубине половины радиуса. При равномерном распределении масс плотность всюду равна уже известному нам среднему значению Давление в средней точке равно весу радиального столбика вещества сечением 1 см2 и высотой R¤/2 (см. рис. 129, 6), т.е. (9.7) В средней точке ускорение силы тяжести g, очевидно, равно (9.8) так как в сфере радиусом R¤/2 при однородном распределении масс заключена 1/8 часть массы всего Солнца. Следовательно, давление в средней точке Солнца равно (9.9) Зная давление и плотность, легко найти температуру Т из уравнения газового состояния: (9.10) Таким образом, мы получили следующие значения характеристик физических свойств “однородного Солнца” на глубине, равной половине радиуса R¤/2: r = 1,4 г/см2 (1,3 г/см2), Р = 6,6Ч1014 дин/см2 (6,1Ч1014 дин/см2), T = 2 800 000° (3 400 000°). В скобках приведены те же величины, рассчитанные точными методами, учитывающими неоднородное распределение масс в Солнце. Таким образом, для средней точки предположение о равномерном распределении масс приводит к правдоподобным результатам. В центре Солнца давление, плотность и температура должны быть еще больше. В табл.5 приведена так называемая модель внутреннего строения Солнца, т.е. зависимость его физических свойств от глубины. Таблица 5 Модель внутреннего строения Солнца Расстояние от центраТемператураДавление Плотность R/RQT(°K)P(дин/см2)r(г/см3) 01,5 ·1072,2·1017150 0,21074,6·101636 0,53,4 ·1066,1·10141,3 0,81,3 ·1066,2·10120,035 0,9810510100,001 Из табл. 5 видно, что в недрах Солнца температура превышает 10 миллионов градусов, а давление – сотни миллиардов атмосфер (1 атм = 103 дин/см2). В этих условиях отдельные атомы движутся с огромными скоростями, достигающими, например, для водорода, сотен километров в секунду. Поскольку при этом плотность вещества очень велика, весьма часто происходят атомные столкновения. Некоторые из таких столкновений приводят к тесным сближениям атомных ядер, необходимым для возникновения ядерных реакций. В недрах Солнца существенную роль играют две ядерные реакции. В результате одной из них, схематически изображенной на рис. 130, из четырех атомов водорода образуется один атом гелия. На промежуточных стадиях реакции образуются ядра тяжелого водорода (дейтерия) и ядра изотопа Не3. Эта реакция называется протон-протонной. Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит названия углеродного цикла. Исключительно важным является то обстоятельство, что масса ядра гелия почти на 1% меньше массы четырех протонов. Эта кажущаяся потеря массы называется дефектом массы и является причиной выделения в результате ядерных реакций большого количества энергии, так как согласно формуле Эйнштейна энергия, которая связана с массой т, равна Е = тЧ с2 Описанные ядерные реакции являются источником энергии, излучаемой Солнцем в мировое пространство. Так как наибольшие температуры и давление создаются в самых глубоких слоях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходит в самом центре Солнца. Только здесь наряду с протон-протонной реакцией большую роль играет углеродный цикл. По мере удаления от центра Солнца температура и давление становятся меньше, выделение энергии за счет углеродного цикла быстро прекращается и вплоть до расстояния около 0,2-0,3 радиуса от центра существенной остается только протон-протонная реакция. На расстоянии от центра больше 0,3 радиуса температура становится меньше 5 миллионов градусов, а давление ниже 10 миллиардов атмосфер. В этих условиях ядерные реакции происходить совсем не могут. Эти слои только передают наружу излучение, выделившееся на большей глубине в виде гамма-квантов, которые поглощаются и переизлучаются отдельными атомами. Существенно, что вместо каждого поглощенного кванта большой энергии атомы, как правило, излучают несколько квантов меньших энергий. Происходит это по следующей причине. Поглощая, атом ионизуется или сильно возбуждается и приобретает способность излучать. Однако возвращение электрона на исходный энергетический уровень происходит не сразу, а через промежуточные состояния, при переходах между которыми выделяются кванты меньших энергий. В результате этого происходит как бы “дробление” жестких квантов на менее энергичные. Поэтому вместо гамма-лучей излучаются рентгеновские, вместо рентгеновских – ультрафиолетовые, которые в свою очередь уже в наружных слоях дробятся на кванты видимых и тепловых лучей, окончательно излучаемых Солнцем. Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии путем поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия. Она занимает область примерно от 0,3 до 0,7 r¤ от центра Солнца. Выше этого уровня в переносе энергии начинает принимать участие само вещество, и непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией. Наконец, самые внешние слои Солнца, излучение которых можно наблюдать, называются солнечной атмосферой; в основном она состоит из трех слоев, называемых фотосферой, хромосферой и короной. Они будут рассмотрены в следующих параграфах. В целом описанная структура Солнца изображена на рис. 131. Рис. 131. Схематический разрез Солнца и его атмосферы § 121. Фотосфера Фотосферой называется основная часть солнечной атмосферы, в которой образуется видимое излучение, имеющее непрерывный спектр. Таким образом, она излучает практически всю приходящую к нам солнечную энергию. Фотосфера видна при непосредственном наблюдении Солнца в белом свете в виде кажущейся его “поверхности”. Первое, что бросается в глаза во время таких наблюдений, – плавное потемнение солнечного диска к краю. По мере удаления от центра яркость убывает все быстрее и быстрее, особенно на самом краю, который оказывается очень резким. На рис. 132 изображено изменение яркости диска Солнца с расстоянием от центра при наблюдении в различных лучах. Потемнение диска Солнца к краю объясняется тем, что в фотосфере происходит рост температуры с глубиной. Различные точки солнечного диска обычно характеризуют углом 9, который составляет луч зрения с нормалью к поверхности Солнца в рассматриваемом месте (рис. 133). В центре диска этот угол равен нулю и луч зрения совпадает с радиусом Солнца. На краю q = 90°, и луч зрения скользит вдоль касательной к слоям Солнца. Как было показано в § 105, большая часть излучения некоторого слоя газа исходит от уровня, находящегося на оптической глубине t « 1. Когда луч зрения пересекает слои фотосферы под большим углом 9, оптическая глубина t = 1 достигается в более внешних слоях, где температура меньше. Вследствие этого интенсивность излучения от краев солнечного диска меньше интенсивности излучения его середины (рис. 134). Точные измерения распределения яркости по диску Солнца позволяют рассчитать изменение с глубиной всех важнейших характеристик фотосферы. Такой расчет называется построением ее модели. Не вдаваясь в детали, изложим основную его идею. Определение зависимости температуры от глубины. Уменьшение яркости солнечного диска к краю в первом приближении пропорционально cos q и может быть представлено эмпирической формулой I(q ) = I0(1 – u + u cos q ),(9.11) где I(q ) – яркость в точке, в которой луч зрения составляет угол q с нормалью, I0 – яркость излучения центра диска, и – коэффициент пропорциональности, зависящий от длины волны. В соответствии с рис. 132 для красных лучей значение и меньше, чем для синих. Для зеленых лучей с длиной волны l = 5000 Е и = 0,65, I0 = 4,6 Ч 1014 эрг/см2 Ч сек Ч стерад для Dl = 1 см. Теперь воспользуемся тем обстоятельством, что наблюдаемая яркость примерно равна излучательной способности вещества на оптической глубине t = 1 (см. стр. 223). Поскольку при переходе от центра диска к краю изменяется угол наблюдения, различие яркости I(q ) по диску Солнца отражает соответствующее изменение излучательной способности атмосферы с глубиной (или оптической толщиной, измеряемой вдоль радиуса). Из рис. 134 видно, что количество вещества вдоль отрезка радиуса в sec q раз меньше, чем вдоль отрезка луча зрения, заключенного между теми же концентрическими слоями. Следовательно, слой, фактически наблюдаемый в данной точке диска (т.е. расположенный на оптической глубине, равной 1 вдоль луча зрения), находится на оптической глубине вдоль радиуса t = cos q . Подставляя это в (9.11), получаем, что излучательная способность атмосферы изменяется с оптической глубиной вдоль радиуса следующим образом: I(t ) = I0(1 – u + ut ),(9.12) или, для зеленых лучей, I5000 (t 5000) = (0,35 + 0,65t 5000)Ч4,6Ч1014 эрг/см2Ч секЧстерадЧсм. Таким образом, излучение фотосферы на оптической глубине t l , отсчитываемой вдоль радиуса, приблизительно равно яркости солнечного диска в точке, где cos q = t l . Фотосфера сильно излучает, а следовательно, и поглощает излучение во всей области видимого непрерывного спектра. Это дает право применять к ее излучению законы теплового равновесия, сформулированные в § 106. Тогда для каждого слоя фотосферы, расположенного на определенной глубине, можно найти такое значение температуры, при котором рассматриваемое излучение (в нашем случае с длиной волны l = 5000 Е) Как видно из этой таблицы, температура в фотосфере растет с глубиной и в среднем близка к 6000°. Вспоминая выводы, сделанные в § 119, мы видим, что верхние слои фотосферы совпадают с выявленной там областью минимальной температуры. Далее, из заключения того же параграфа следует, что водород в фотосфере ионизован слабо. Определение протяженности фотосферы. Чтобы оценить протяженность фотосферы, воспользуемся введенным в § 120 понятием шкалы высоты. Для атмосферы давление на верхней границе P1 стремится к нулю, а потому давление у основания P2 « r gH.(9.13) Величину Н можно рассматривать как протяженность такой однородной атмосферы с постоянной плотностью r , которая создает то же давление у основания, что и рассматриваемая. Поэтому величину Н часто называют высотой однородной атмосферы. Она характеризует протяженность атмосферы. Действительно, выражение (9.13) можно переписать так: mg¤ H = kT,(9.14) где m и k суть m и R , рассчитанные на одну частицу. Как следует из последнего равенства, частицы атмосферных газов распределяются таким образом, что их наиболее вероятная кинетическая энергия равна потенциальной энергии, соответствующей подъему на высоту Н, совпадающую со шкалой высоты (9.5). Поскольку фотосфера состоит главным образом из неионизованного водорода, для нее m « 1. Подставляя это значение в формулу (9.14) и полагая в ней T = 6000° и g¤ = 2,7Ч104 см/сек2, находим, что (9.15) Следовательно, существенное изменение плотности происходит в фотосфере на протяжении сотен километров, что составляет примерно 1/3000 часть солнечного радиуса. Плотность вещества и давление в фотосфере. В § 108 было показано, что слой, в котором возникает наибольшая доля выходящего излучения, расположен на оптической глубине t = 1. Поэтому, согласно определению оптической толщины (7.29), t = k r H « 1.(9.16) В этом выражении k – коэффициент поглощения, рассчитанный на 1 г вещества. В среднем для фотосферного вещества он равен 0,6 см2/г. Тогда, полагая Н = 180 км, получаем Более точные расчеты показывают, что плотность в фотосфере меняется от 0,1Ч10-7 г/см3 в верхних слоях примерно до 5Ч10-7 г/см3 в самых глубоких. Поскольку масса атома водорода равна 1,6Ч10-24 г, это означает, что в 1 см3 фотосферы содержится от 6Ч1015 до 3Ч1017 атомов. Теперь по формуле (7.9) легко найти давление газа, полагая m = 1 г/моль и Т = 6000°, которое, очевидно, меняется от 5Ч103 до 2,5Ч105 дин/см2. Давление 105 дин/см2 соответствует 100 миллибарам или около 0,1 атмосферы. Проведенные рассуждения являются лишь грубой иллюстрацией основных этапов определения физических свойств вещества в фотосфере. Все численные результаты весьма приближенны. Тем не менее они дают верное представление об условиях в фотосфере и хорошо согласуются с более точными значениями, приведенными в табл. 6, в которой геометрическая глубина h отсчитывается от уровня, соответствующего наблюдаемому краю Солнца со знаком “+” вверх и “-” вглубь фотосферы. Итак, фотосфера – тонкий слой газа протяженностью в несколько сотен километров, весьма непрозрачный, с концентрацией частиц около 1016-1017 в 1 см3, температурой 5-6 тысяч градусов и давлением около 0,1 атмосферы. В этих условиях все химические элементы с небольшими потенциалами ионизации (в несколько вольт, например, Na, К, Са) ионизуются. Остальные элементы, в том числе водород, остаются преимущественно в нейтральном состоянии. Фотосфера – единственная на Солнце область нейтрального водорода. Однако в результате незначительной ионизации водорода и практически полной ионизации металлов в ней все же имеются свободные электроны. Эти электроны играют исключительно важную роль: соединяясь с нейтральными атомами водорода, они образуют отрицательные ионы водорода (Н-). Это протоны, с которыми связан не один, как обычно у водорода, а два электрона. Отрицательные ионы водорода образуются в ничтожном количестве: из ста миллионов водородных атомов в среднем только один превращается в отрицательный ион. Ионы Н– обладают свойством необычайно сильно поглощать излучение, особенно в инфракрасной и видимой областях спектра. Поэтому, несмотря на свою ничтожную концентрацию, отрицательные ионы водорода являются основной причиной, определяющей поглощение фотосферным веществом излучения в видимой области спектра. § 122. Грануляция и конвективная зона Визуальные и фотографические наблюдения фотосферы, выполненные во время особенно хороших атмосферных условий, позволяют обнаружить тонкую ее структуру, напоминающую тесно расположенные кучевые облака или рассыпанные рисовые зерна (рис. 135). Светлые округлые образования называются гранулами, а вся структура – грануляцией. Угловые размеры гранул в среднем составляют не более 1» дуги, что соответствует на Солнце менее 700 км. Каждая отдельная гранула “существует” в среднем 5-10 минут, после чего она распадается, а на ее месте возникают новые. Гранулы окружены темными промежутками, образующими как бы ячейки или соты. Спектральные линии в гранулах и п промежутках между ними смещены соответственно в синюю и красную сторону. Это означает, что в гранулах – вещество поднимается, а вокруг них опускается. Скорость этих движений составляет 1-2 км/сек. Грануляция – наблюдаемое в фотосфере проявление конвективной зоны, расположенной под фотосферой. В конвективной зоне происходит активное перемешивание вещества в результате подъема и опускания отдельных масс газа (элементов конвекции). Пройдя путь, примерно равный своим размерам, они как бы растворяются в окружающей среде, порождая новые неоднородности. В наружных, более холодных слоях, размеры этих неоднородностей меньше. Причиной возникновения конвекции в наружных слоях Солнца являются два важных обстоятельства. С одной стороны, температура непосредственно под фотосферой очень быстро растет в глубь и лучеиспускание не может обеспечить выхода излучения из более глубоких горячих слоев. Поэтому энергия переносится самими движущимися неоднородностями. С другой стороны, эти неоднородности оказываются весьма “живучими”, если газ в них не полностью, а лишь частично ионизован: за счет ионизационной энергии их температура почти не меняется и избыток температуры долго сохраняется. При переходе в нижние слои фотосферы оба эти обстоятельства перестают действовать: из-за потерь на излучение температура резко уменьшается и замедляется темп ее уменьшения вверх, а газ почти полностью нейтрализуется и, не обладая запасом ионизационной энергии, не способен образовывать устойчивые неоднородности. Поэтому в самых верхних слоях конвективной зоны, непосредственно под фотосферой, конвективные движения резко тормозятся и конвекция внезапно прекращается. Таким образом, фотосфера снизу постоянно как бы “бомбардируется” конвективными элементами. От этих ударов в ней возникают возмущения, наблюдаемые в виде гранул, а сама она приходит в колебательное движение с периодом, соответствующим частоте собственных колебаний фотосферы (около 5 минут). Эти колебания и возмущения, возникающие в фотосфере, порождают в ней волны, по своей природе близкие к звуковым волнам в воздухе. Как мы увидим в следующем параграфе, эти волны играют важную роль для более высоких слоев солнечной атмосферы. § 123. Внешние слои солнечной атмосферы Как уже упоминалось, плотность вещества в фотосфере быстро уменьшается с высотой и внешние слои солнечной атмосферы оказываются сильно разреженными. В наружных слоях фотосферы, где плотность уменьшается до значения 3Ч10-8 г/см3, температура падает примерно до 4500°. Это значение температуры оказывается минимальным для всей солнечной атмосферы. В более высоких слоях температура снова начинает возрастать. Сначала происходит медленное возрастание температуры до нескольких десятков тысяч градусов, сопровождающееся ионизацией водорода, а затем и гелия. Эта часть солнечной атмосферы называется хромосферой. В верхних слоях хромосферы, где разреженность достигает 10-15 г/см3, т.е. в каждом кубическом сантиметре находится всего лишь 109 атомов, происходит еще одно необычайно резкое увеличение температуры, примерно до миллиона градусов. Здесь начинается самая внешняя и наиболее разреженная часть атмосферы Солнца, называемая солнечной короной. Причиной столь сильного разогрева самых внешних слоев солнечной атмосферы является энергия акустических (звуковых) волн, которые, как говорилось в § 122, возникают в фотосфере в результате движения элементов конвекции. При распространении вверх, т.е. в слои с меньшей плотностью, эти волны увеличивают свою амплитуду до нескольких километров и превращаются в ударные волны. Ударные волны отличаются от обычных очень резким перепадом температуры, давления и плотности газа в волне и в невозмущенной среде: Происходит это потому, что в области сжатия растет температура и плотность, а следовательно, и скорость распространения звука. Из-за этого волны с большой амплитудой существенно изменяют свою структуру: в области сжатия вещество “набегает” в направлении распространения волны и образуется резкая граница с примыкающей невозмущенной областью – крутой фронт ударной волны. В результате возникновения ударных волн правильные волнообразные движения протяженных областей атмосферы разбиваются на отдельные более мелкие и беспорядочно движущиеся массы газа. Этот процесс называется диссипацией волн. В результате диссипации, которая особенно сильно происходит в хромосфере и короне, увеличиваются хаотические скорости движения отдельных атомов, т.е. усиливаются тепловые движения частиц. Вследствие этого происходит рост температуры в хромосфере и короне. § 124. Хромосфера Интегральная, т.е. по всему спектру, яркость хромосферы в сотни раз меньше, чем яркость фотосферы, хотя в наиболее интенсивных линиях их излучение соизмеримо. Поэтому для наблюдения хромосферы необходимо применение специальных методов, позволяющих выделить слабое ее излучение из мощного потока фотосферной радиации. Наиболее удобным и исторически первым методом являются наблюдения, производимые вблизи второго и третьего контактов полных солнечных затмений. Как только Луна полностью закроет фотосферу, вблизи точки контакта вспыхивает блестящий розовый серп хромосферы. Ширина такого серпа дает непосредственное представление о протяженности хромосферы, составляющей 16-20», т.е. в линейной мере 12-15 тысяч км. Хромосфера имеет эмиссионный спектр, состоящий из ярких линий (рис. 136). При наблюдении кажется, что они вспыхивают в момент наступления полной фазы затмения. По этой причине спектр хромосферы был назван спектром вспышки. Этот спектр очень похож на спектр Солнца, в котором все линии поглощения заменены на линии излучения, а непрерывный спектр почти отсутствует. Однако в спектре хромосферы линии ионизованных элементов сильнее, чем в спектре фотосферы. В частности, например, в спектре хромосферы очень сильны линии гелия, в то время как в фраунгоферовом спектре они практически не видны. Эти особенности спектра подтверждают рост температуры в хромосфере. Наиболее интенсивны в спектре хромосферы линии ионизованного кальция, водорода и гелия, в кото