Здесь важнее описать не степень сложности задачи, а сам процесс мышления при ее решении. Полезно делать некоторые записи об апробированных подходах и приемах, последовательности шагов. Не считайте это чем-то постыдным для себя. По крайней мере вы будете иметь правдивую оценку своих мыслительных способностей, что уже немало.
Вероятно, некоторые подходы к решению задачи быстрее придут вам на ум, чем другие. Разум любого человека имеет свои особенности, как и быстрота мышления. Выявив эти особенности, необходимо активно задействовать все положительные качества и всячески избегать использования негативных.
Лучше уж не выполнить задание, зато детально проанализировать сам процесс решения задачи. Можно быстро справиться с заданием, не осознав, по существу, как это произошло. Но это не означает, что вдохновение здесь ничего не стоит. Если оно подсказало верное решение, то его следует приветствовать. Однако нередко вдохновение рождает лишь случайное открытие, что также нужно иметь в виду.
Решение задачи с двумя банками
Как ни удивительно, оно очень простое (см. рис. 3). Полученная конструкция довольно устойчива, она полностью перекрывает расстояние между банками. Возможно, потребуется немного сбалансировать ее, но и это вполне выполнимо. Если ручки ножей не плоские, придется уравновесить и стакан с водой. Когда ручки плотно опираются на банки, стакан не будет скатываться или скользить.
Решение непосредственно вытекает из решения предыдущей задачи, хотя их связь здесь не столь очевидна, как в первых двух случаях. Нет и общего принципа, на основании которого можно быстро найти нужное решение.
Однако детальное рассмотрение задачи с четырьмя банками могло бы дать ключ к ответу. Исследуем процесс поиска решения в этом случае. Будем считать, что мостик образуют ножи В и С (рис. 4). Если убрать банки А и D, конструкция рухнет, так как лишаются опор ножи А и D, соединяющие мостик В-С. Нож, поддерживаемый банкой А, превратится в длинный рычаг. Даже при незначительном давлении на другой конец ножа, его ручка отрывается от опоры А. Чтобы не образовался такой рычаг, необходимо развернуть нож на 180°. Банку А можно убрать. Теперь ножи А и D параллельны. Все силы уравновешены, обеспечена целостность конструкции.
Ту же процедуру можно проделать с ножом D. В результате мы получим устойчивую конструкцию, связывающую банки В ж С. Это и есть решение задачи с двумя банками.
Оно получено из анализа задачи с четырьмя банками посредством изменения направления силы на конце ручки ножа: если на опоре она действовала вверх, то теперь за счет веса ножа – вниз.
Чтобы вывести решение задачи 3 из решения задачи с четырьмя банками, необходимо рассмотреть последнее с новой точки зрения. Конструкцию, являющуюся решением задачи с четырьмя банками, можно тоже считать мостиком, но с двумя лишними опорами. Необходимо лишь избавиться от этих опор. Для этого мы и рассмотрели нож как часть воображаемого рычага, воздействие вниз на один конец которого приводит к перемещению вверх другого его конца. Поэтому и нужно было найти такое положение ножа, при котором уравновешивались бы два плеча образуемого им рычага. Это и в самом деле довольно сложный процесс.
То же решение можно получить совершенно другим путем.
Некоторые из вас, вероятно, поставили перед собой цель узнать, как учет веса ножа помогает соорудить конструкцию. Это явилось бы совершенно новой идеей, не реализованной в первых двух случаях. Такой подход мог оказаться эффективным. Другие же люди не смогли прийти к столь парадоксальной идее, так как их основной принцип состоял в том, чтобы найти опору для ножа. Им казался невозможным случай, когда вес поддерживается не опорой, а весом другого ножа.
Лишь рассматривая:
1) вес как активно действующую силу, а не пассивный груз;
2) задачу 3 как задачу с четырьмя банками, две из которых удалены;
3) опору как источник силы, направленной вверх, которая может имитировать силу, тянущую вниз другой конец рычага;
4) нож в обеих позициях как двуплечный рычаг, можно решить эту задачу.
Важно видеть в вещах не то, чем они являются, а то, чем они могут быть. На вещи можно смотреть по-разному, и иногда менее очевидный путь решения задачи оказывается наиболее полезным. Даже твердо зная, что собой представляет тот или иной предмет, полезно подумать, чем еще он может быть.