Вытекающий из сказанного способ приближенного решения задачи о квадратуре круга весьма несложен. Построив прямоугольный треугольник с катетами R и (здесь R — радиус круга), превращают его в равновеликий квадрат. Построение стороны х этого квадрата можно выполнить различными способами. Способ, показанный на рис. 3, основан на том, что перпендикуляр, опущенный из точки полуокружности на ее диаметр, есть среднепропорциональная между отрезками диаметра.
Отложив на прямой последовательно AC=R и , строим на сумме этих отрезков, как на диаметре, полуокружность; перпендикуляр в точке С есть искомая сторона х квадрата. В самом деле, из рис. 3 имеем
откуда
т. е. площадь квадрата со стороною х приближенно равна площади круга.
Чем точнее известно значение π, тем, очевидно, точнее может быть выполнено такое построение. Естественно поэтому, что позднейшие работы математиков над квадратурой круга были тесно связаны с получением возможно более точного π. В течение почти двух тысячелетий после Архимеда нахождение π велось по методу великого математика древности; способ Архимеда заключался в том, что площадь круга сравнивалась с площадями вписанных и описанных правильных многоугольников, число сторон которых последовательно удваивается. Совершенствуя метод Архимеда, позднейшие математики получали для π все более и более точные значения. Представленное в виде десятичных дробей, значение π выражалось десятками цифр. Так, голландский математик Лудольф ван-Цейлен, пользуясь методом Архимеда, вычислил (в 1615 г.) π c 31 верным десятичным знаком: π=3.1415926535897932384626433832795. (Эта дробь называется «Лудольфовым числом»). Оставалось, однако, неизвестным, имеет ли этот все удлиняющийся ряд цифр конец, или же он бесконечен.
Когда, во второй половине XVII века, открыто было исчисление бесконечно малых, эта отрасль высшей математики нашла более быстрые и удобные приемы вычисления π нежели те, которыми располагает элементарная математика. Открыты были весьма важные для теории соотношения между числом π и другими математическими величинами. Наконец, выявлены были замечательные особенности числа π, бросившие новый свет на старинную задачу о квадратуре круга.
До настоящего времени известно 707 цифр в числе π. Они были вычислены в 1874 г. английским математиком Шенксом. Это «самое длинное π» изображено под потолком зала математических развлечений Дома Занимательной Науки в Ленинграде, вдоль четырех стен помещения.
Завершение поисков
Каким бы путем ни приступать к задаче о квадратуре круга, она приводит к необходимости построить отрезок x, удовлетворяющий уравнению
иначе говоря, задача приводит к построению формулы . Чтобы установить, выполнимо ли это построение, нужно выяснить, какие вообще выражения могут быть построены циркулем и линейкой. В высшей математике (в той ее отрасли, которая называется аналитической геометрией) доказывается, что циркулем и линейкой могут быть построены только такие выражения, в состав которых входят действия сложения, вычитания, умножения, деления, извлечения квадратного корня и никакие другие; при этом число перечисленных операций не должно быть бесконечно велико. Тем же условиям должны удовлетворять и числа, входящие в формулу: если они но даны прямо, они должны получаться в результате только перечисленных действий.
Так, например, следующая формула
может быть построена (это — сторона правильного описанного десятиугольника). Напротив, простая на вид формула удвоения куба
не может быть построена.
Обращаясь к формуле квадратуры круга, , мы видим, что она заключает только действия умножения и извлечения квадратного корня, т. е. операции, позволяющие выполнить построение. Однако, в формулу входит число π, и надо установить, допускает ли формула, содержащая это число, выполнение построения. Немецкий математик Ламберт доказал в 1766 г., что число π принадлежит к роду чисел, называемых несоизмеримыми (или иррациональными); такие числа не могут быть точно выражены конечным рядом цифр. Среди не-математиков распространено мнение, что неразрешимость квадратуры круга обусловлена несоизмеримостью числа π, так как нельзя будто бы построить число, выражающееся бесконечным рядом цифр. Это обоснование неправильно. Существует такой род несоизмеримых чисел, которые могут быть построены. В качестве примеров укажем числа