(2.9)
из которого следует правило Ланде для константы спин-орбитального взаимодействия
(2.10)
Легко убедиться, что
(2.11)
т. е. энергия терма равна средневзвешенному значению энергетических уровней тонкой структуры:
(2.12)
Согласно правилам Хунда, энергия EKLS,J будет наименьшей, если: 1) квантовое число S максимально; 2) при равных S максимально квантовое число L; 3) при равных S и L квантовое число J максимально при AKLS<0 и минимально при AKLS> 0.
В качестве примера использования правил Хунда рассмотрим структуру энергетических уровней атома углерода для конфигурации ls22s22p2 (рис. 4). Из пятнадцати однодетерминантных шестиэлектронных функций этой конфигурации можно составить девять функций терма 3Р (L = 1 и S = 1), пять функций терма 1D (L = 2 и S = 0) и единственную функцию терма 1S (L = 0 и S = 0). Наименьшей энергии отвечает терм 3Р, обладающий максимальной мультиплетностью по спину. За ним следует терм 1D, поскольку он характеризуется большим значением квантового числа L, чем терм 1S, при равной спиновой мультиплетности.
Рис. 4. Структура энергетических уровней атома углерода
Спин-орбитальное взаимодействие приводит к расщеплению лишь терма 3Р, так как для остальных термов полный спиновый момент равен нулю (а мультиплетность — единице). Для терма 3Р константа А > 0 и, следовательно, уровни тонкой структуры этого терма возрастают в последовательности 3Р0, 3P1, 3Р2, где нижний индекс указывает значения квантового числа J.
Строго говоря, орбитальные энергии εnl различны для разных термов одной конфигурации. Согласно расчету Клементи, атомным орбиталям 1s22s22p2-конфигурации углерода в зависимости от терма соответствуют анергии εnl (в атомных единицах):
Таким образом, расстояние между энергетическими уровнями 2s- и 2p-АО при переходе от терма 3Р к терму 1S увеличивается почти на 0,16 ат. ед., что соответствует 4,3 эВ или 98 ккал/моль.
В большей степени орбитальные энергии зависят от атомной конфигурации. Эту зависимость можно показать на примере рассмотренной выше 1s22s22p2-конфигурации и возбужденных 1s22s22p3- и 1s22р4-конфигураций атома углерода [70]. Из множества термов, соответствующих этим конфигурациям, выберем термы 3Р и 1D:
Под полной электронной энергией атомной конфигурации следует понимать средневзвешенное значение энергии ее термов:
(2.13)
Было бы ошибкой отождествлять энергию конфигурации с суммой орбитальных энергий
(2.14)
Эта величина, как и орбитальные энергии, определяется не только конфигурацией, но и термом атомного состояния. Кроме того, Eoрб составляет лишь часть, причем меньшую часть, полной электронной энергии термов.
По мере увеличения заряда атомного ядра погрешности, связанные с пренебрежением одноэлектронным спин-орбитальньм взаимодействием, увеличиваются, и приходится учитывать расщепление каждой (nl)-оболочки на две подоболочки, различаю щиеся новым спин-орбитальным квантовым числом j:
При этом атомные спин-орбитали уже не могут быть представлены как произведение орбитали и спиновой функции (α или β), и конфигурация атома характеризуется распределением электронов по (nlj)-оболочкам:
Рис. 5. Структура энергетических уровней атома свинца
Многоэлектронные волновые функции, соответствующие уровням тонкой структуры, строятся в этом приближении, называемом приближением j-j-связи, непосредственно из детерминантов "расщепленной" конфигурации.
Схему j-j-связи иллюстрирует пример атома свинца, основная конфигурация которого (...6s26p2) аналогична основной конфигурации атома углерода (...2s22p2), но существенно отличается от последней структурой энергетических уровней (рис. 5)