Выбрать главу

Следует подчеркнуть, что выбор квантовых чисел, определяющих состояние атома, зависит от того, в каком приближении мы его рассматриваем. Так, без учета спин-орбитального взаимодействия состояние атома характеризуется квантовыми числами L и S. Однако при учете этого взаимодействия уже нельзя говорить о сохранении орбитального и спинового моментов по отдельности, и соответствующие им квантовые числа L и S не будут более "хорошими" квантовыми числами. Вместо них следует использовать квантовое число J, характеризующее полный спин-орбитальный момент импульса, который в этом приближении будет сохраняться. В то же время если спин-орбитальное расщепление энергетических уровней достаточно мало, можно установить соответствие между уровнями тонкой структуры и определяемыми в более грубом приближении энергетическими уровнями термов. Точно так же для тяжелых атомов квантовое число l, характеризующее одноэлектронный орбитальный момент импульса, перестает служить "хорошим" квантовым числом, лишь только мы учитываем спин-орбитальное взаимодействие на одноэлектронном уровне.

Атомные орбитали и их графическое представление

Рассмотрим атом водорода — простейший из атомов, включающий лишь один электрон, который взаимодействует с ядром по закону Кулона. Задача определения электронных состояний атома водорода (квантовомеханическая проблема Кеплера) — одна из немногих задач квантовой механики, имеющих точное аналитическое решение. Такая возможность обусловлена тем, что в этом случае гамильтониан допускает разделение переменных в сферической системе координат (r, υ, φ), т. е. орбиталь ψ, описывающая движение электрона в поле ядра, может быть представлена в виде произведения трех функций и каждая из них зависит только от одной независимой переменной:

(2.15)

При этом орбиталь ψnlm характеризуется тремя квантовыми числами: n, l и m (табл. 1).

Таблица 1. Атомные орбитали атома водорода для n = 1, 2, 3

Квантовое число l, целое и неотрицательное, определяет орбитальный момент импульса электрона, точнее его квадрат: l(l + 1).

Квантовое число m, целое и не превышающее по абсолютной величине l, представляет проекцию орбитального момента импульса на произвольно выбранную ось квантования z.

Главное квантовое число n нумерует орбитальную энергию εn в порядке возрастания:

(2.16)

Характерным для атома водорода является то, что энергия εn не зависит от квантового числа орбитального момента импульcа и определяется главным квантовым числом n:

(2.17)

Для многоэлектронных атомов проблема усложняется. Хотя одноэлектронное приближение и сферическая модель самосогласованного поля позволяют произвести разделение переменных r, υ, φ и в этом случае, точное аналитическое выражение для радиальных функций R(r), к сожалению, не получается. Они определяются в приближении самосогласованного поля решением уравнений Хартри-Фока (см. гл. 3). Соответствующие орбитальные энергии εnl зависят как от главного, так и от орбитального квантовых чисел, причем главное квантовое число n нумерует εnl с фиксированным l в порядке возрастания целыми числами, начиная с (l + 1).

Радиальная зависимость орбиталей в многоэлектронных атомах может быть довольно сложной, но их узловая структура подобна узловой структуре орбиталей атома водорода: радиальная функция Rnl(r) характеризуется (n-l-1) узлом, т. е. обращается в нуль при (n-l-1) конечном значении r > 0.

Графическое представление радиальных функций. Для графического представления радиальных функций используется либо график самой функции Rnl(r), либо график соответствующей ей плотности вероятности локализации электрона на расстоянии r от атомного ядра:

(2.18)

причем функция ρnl(r) нормирована на единицу:

(2.19)

Следует отметить, что в соответствии с условием формировки сферических функций интегрирование по углам υ и φ не приводит к появлению множителя 4π, который иногда ошибочно включается в выражение для ρnl(r).

Примеры графического представления радиальных функций приведены на рис. 6.

Рис. 6. Графическое представление радиальных функций

Графическое представление угловой зависимости атомных орбиталей. Для графического представления сферических функций