Выбрать главу

(3.31)

где и т. п. При этом φа1,...,φаp могут быть (в общем случае) не сферическими орбиталями изолированного атома, а их линейными комбинациями, т. е. гибридными атомными орбиталями.

Совокупность всех орбиталей ф называется в методе ВС конфигурацией, а каждый из наборов (φа1,...,φаp)- валентной конфигурацией ГA атома A. Некоторые из атомных орбиталей входят в ГА дважды (т. е. φаi = φаj) и называются спаренными. Число неспаренных орбиталей в конфигурации ГА называется спин-валентностью атома A, находящегося в соответствующем валентном состоянии. Это определение спин-валентности является обобщением, данным Лондоном. Действительно, если пренебречь гибридизацией атомных орбиталей, то оба определения станут идентичными, т. е. спин-валентность окажется равной мультиплетности основного (низшего) терма, уменьшенной на единицу.

Функция Φ домножается на функцию Θ(σ1,...,σN), зависящую от спиновых переменных всех электронов. Многоэлектронная функция Ψ, определяющая электронное состояние молекулы, должна быть собственной для оператора квадрата полного спинового момента N-электронной системы, которую представляет молекула. Так как действует только на функцию Θ указанное условиt накладывает определенные ограничения только на Θ, но не на Φ.

Подавляющее число веществ, способных к длительному существованию, состоит из молекул с нулевым полным спином, т. е. находится в синглетном состоянии. Для простоты изложения в дальнейшем будут рассматриваться только такие молекулы.

Каждой атомной орбитали φ соответствует одна из двух одноэлектронных спиновых функций α(σ) и β(σ), которые являются собственными для одноэлектронного оператора проекции спинового момента на ось квантования [см. (3. 19)].

Функция Θ может быть построена из одноэлектронных спиновых функций следующим образом:

   • из пары функций α(σ) и β(σ) составляется двухэлектронная функция

(3.32)

   • перемножением N/2 функций γ, зависящих от спиновых переменных различных электронов, получается функция

(3.33)

Необходимость индексации функции Θ обусловлена неоднозначностью ее построения из функций γ.

Если конфигурация N-электронной системы содержит п неспаренных АО, то, как это было показано Гайтлером и Румером [51-52], можно построить линейно-независимых Θχ. Например, для π-электронной системы бензола, включающей шесть электронов и столько же атомных π-орбиталей, можно построить пять независимых Θχ (χ = 1,...,5).

Таким образом, оказывается необходимым рассмотрение функции вида

(3.34)

содержащей числовые коэффициенты Сχ, которые должны определяться минимизацией полной электронной энергии молекулы.

Согласно принципу Паули, функция состояния многоэлектронной системы должна быть антисимметричной относительно всевозможных перестановок (riσi) → (rj, σj). Функция Ψ0, однако, такой не является, и поэтому ее следует антисимметризовать. Учитывая, что Ф является произведением орбиталей φ, легко видеть, что процедура антисимметризации сохраняет соответствие между парой орбиталей {φi, φj} и некоторой двух-электронной спиновой функцией у для каждого слагаемого в сумме (3.34), характеризующегося некоторым индексом χ и называемого структурой ВС. Можно сказать поэтому, что орбитали φi и φj в некоторой структуре ае спарены. Таким образом, одно из центральных понятий ранних квантовохимических работ — понятие спаривания электронов (точнее, атомных орбиталей) — сохраняется и в более общей теории при правильном учете принципа антисимметрии.

Если каждой орбитали φi сопоставить точку на плоскости, то спаривание двух орбиталей можно представить графически отрезком, соединяющим две соответствующие точки. Так, например, одна из структур молекулы аммиака NH3 может быть представлена диаграммой I (рис. 14). Здесь прерывистой линией обведена группа точек, соответствующих орбиталям атома азота. Стягивая каждую из таких групп в одну точку, можно получить диаграмму II связей атомов в структуре ВС. Аналогично для молекулы азота N2 получаем диаграмму III.

Рис. 14. Диаграммы связей атомов в молекулах NH3 и N2

Иногда возможно с достаточной степенью точности представить электронное строение молекулы одной структурой (приближение идеального спаривания). Тогда кратность связи атомов отождествляется с числом штрихов, соединяющих соответствующие этим атомам группы точек на диаграмме связей, а сами диаграммы вида II становятся идентичными химическим структурным формулам.