(3.61)
Независимо от Гоунта (и почти на год позже) такое представление многоэлектронной функции было предложено Слэтером (1929 г,) [80] и названо его именем (детерминант Слэтера)[29].
В начале 1928 г. появилась работа Уолера и Хартри [83], в которой был дан анализ перестановочной симметрии многоэлектронной функции для систем как с замкнутыми, так и с открытыми оболочками. При этом полная функция системы строилась из бесспиновых орбиталей в виде произведения двух детерминантов. В один из них включались орбитали со спином вверх, а в другой — со спином вниз:
Такое представление функции обеспечивает ее антисимметричность относительно перестановок в каждой из двух групп аргументов ri, разделенных вертикальной чертой. (Заметим, что волновая функция Уолера-Хартри не содержит спиновых переменных![30]) Однако функция (3,62) необладает определенной симметрией относительно перестановок аргументов между указанными двумя группами[31].
В основу современной теории самосогласованного поля легла работа Фока [39], впервые доложенная им 17 декабря 1929 г. на заседании Русского физико-химического общества и напечатанная в 1930 г. в журнале "Zeitschrift fur Physik" и в 1931 г. в "Трудах ГОИ". Фок показал, что при использовании функции Уолера-Хартри и вариационного начала "для волновой функции отдельных электронов получаются уравнения, которые отличаются от уравнений Хартри тем, что содержат члены, передающие так называемый квантовый обмен" [39, с. 126].
При сопоставлении двух методов построения волновой функции Гоунта-Слэтера и Уолера-Хартри необходимо отметить следующее:
а) первый обладает перед вторым тем преимуществом, что он строже учитывает антисимметрию полной многоэлектронной волновой функции относительно перестановок, а именно: однодетерминантная функция Гоунта-Слэтера антисимметрична относительно перестановок электронов не только с одинаковыми, но и с различными значениями спиновых переменных, в то время как в методе Уолера-Хартри электроны с различными значениями спиновых переменных считаются различимыми, и многоэлектронная функция в этом методе не обладает определенной симметрией относительно перестановок координат таких электронов[32];
б) с другой стороны, как показал Фок, функция Уолера-Хартри может быть домножена на многоэлектронную спиновую функцию, являющуюся собственной функцией оператора к в то время как детерминантная функция Слэтера в общем случае не удовлетворяет этому условию. Второе из указанных обстоятельств обусловливает преимущество функции Уолера-Хартри, особенно при обобщении метода ССП на системы с ненулевым полным спиновым моментом. Такие системы широко изучаются в современной химии и биохимии как экспериментально, так и теоретически, поэтому интерес к методу Уолера-Хартри в последнее время возрос. Плодотворность идеи Фока об использовании вариационного начала также проявилась в полной мере в последние годы, когда были развиты методы прямой минимизации функционала электронной энергии.
В 1930-1940 гг. метод Хартри-Фока использовался в основном при расчетах атомных структур, что объясняется возможностью введения дополнительных упрощений, связанных со сферической симметрией задачи (приближение центрального поля).
В 1951 г. ученик Малликена Рутан сформулировал метод Хартри-Фока для молекулярных систем с замкнутыми оболочками [75]. Особенность метода Рутана, отличающая его от исходного метода ССП, состояла в представлении молекулярных орбиталей в виде линейной комбинации атомных. Таким образом, идеи, разработанные в 1920-1930 гг. в теориях Хунда-Малликена, Хартри-Фока, Леннард-Джонса и Слэтера, нашли свое выражение в рамках единого формализма.
С внедрением в начале 50-х годов в практику квантовохимических исследований быстродействующих ЭВМ начался качественно новый этап развития теории строения молекул. Основное внимание исследователей сосредоточилось не столько на качественных аспектах теории химической связи, сколько на развитии методов количественного расчета молекулярных свойств. Однако рассмотрение этой стороны развития теории не входит в нашу задачу. Мы ограничимся в дальнейшем обсуждением лишь некоторых новых результатов, относящихся к описанию структуры химической связи, а также квантовомеханической интерпретации понятий классической теории химического строения.
30
Немного раньше аналогичное представление N- электронной волновой функции было введено Гайтлером [48]. Однако в последующих его работах оно не получило развития.
31
В общем виде задача была решена Фоком (без использования детерминантов) в 1940 г. [26].
32
В этом смысле она не является ни симметричной, ни антисимметричной при перестановке координат, стоящих в выражении (3.62) по разную сторону от вертикальной черты, т. е. в разных детерминантах, а подчиняется циклической симметрии, установленной, как уже отмечалось, Фоком в 1940 г.