Выбрать главу

(4.21)

Такое представление матрицы плотности обобщает приведенное выше выражение (4.6) для одноэлектронной матрицы плотности "чистого" состояния одного электрона с определенной ψ-функцией. В случае многоэлектронной системы отдельному электрону уже нельзя сопоставить какую-либо функцию ψ(r). Состояние электрона в многоэлектронной системе является "смешанным" и описывается одноэлектронной матрицей плотности ρ(r|r') или набором функций ψν(r) и соответствующих им "чистых" состояний. При этом вероятность пребывания электрона в состоянии, определяемом функцией ψν, характеризуется естественной заселенностью nν.

Вследствие антисимметричности многоэлектронной функции Ψ(x1,...,xN) относительно перестановок естественные заселенности орбиталей лежат в пределах 0≤nν≤2, т. е. каждое бесспиновое состояние может быть занято не более чем двумя электронами, причем этим двум электронам сопоставляются спин-орбитали с разными спиновыми множителями, а именно ψν(r)α(σ) и ψν(r)β(σ). Нормировка одноэлектронной матрицы плотности на число электронов в системе (N) означает, что сумма всех естественных заселенностей равна N.

Многоэлектронные функции Ψ(x1,...,xN) содержат очень большую информацию, значительная часть которой, как правило, не представляет физического интереса. Дело в том, что операторы, соответствующие наблюдаемым физическим величинам, являются суммами одно- и двухчастичных операторов

(4.22)

Каждый из операторов i действует только на одну переменную (xj), и каждый из операторов ij действует только на две переменные (хi и хj. Поэтому при вычислении ожидаемых значений одноэлектронные физические величины определяются исключительно одноэлектронной, а дьухэлектронныефизические величины — двухэлектронной матрицей плотности. Последняя заключает в себе фактически всю необходимую информацию о состоянии многоэлектронной системы.

Из всего сказанного выше можно сделать вывод, что использование формализма матрицы плотности в. квантовохимических расчетах должно существенно упрощать их физическую и химическую интерпретацию.

Наиболее полное и строгое изложение метода матрицы плотности в теории молекул дано в монографии М. М. Местечки на [17].

Канонические и локализованные молекулярные орбитали

Молекулярные орбитали fiопределяются обычно как собственные функции некоторого одноэлектронного гамильтониана :

(4.23)

В качестве должен использоваться в принципе оператор Хартри-Фока (фокиан), оптимальным образом учитывающий согласованное взаимодействие электронов в молекуле (см. гл. 3). Этот оператор часто аппроксимируется полуэмпирическими модельными одноэлектронными гамильтонианами. В любом случае предполагается, что симметрия гамильтониана соответствует симметрии молекулы. При этом собственные функции гамильтониана, инвариантного относительно преобразований некоторой точечной группы симметрии, должны преобразовываться по неприводимым представлениям этой группы. Молекулярные орбитали, обладающие такими свойствами симметрии и определяемые как собственные функции одноэлектронного гамильтониана, называются каноническими молекулярными орбиталями. Уже из свойств симметрии канонических МО ясно, что их нельзя сопоставить отдельным химическим связям в молекуле. Канонические МО существенно делокализованы и не отражают экспериментально подтверждаемые аддитивность и транс-ферабельность (т. е. переносимость из одной, в другую родственную молекулу) многих молекулярных свойств.

В то же время каждой канонической МО соответствует одно-электронная энергия εi, которая, согласно теореме Купманса, определяет потенциал ионизации молекулы, то есть энергию удаления электрона из i-гo одноэлектронного состояния в молекуле. Эти орбитали могут успешно использоваться и при оценках энергий электронных возбуждений.

В однодетерминантном приближении канонические МО являются одновременно естественными молекулярными орбиталямц в том смысле, что одноэлектронная плотность представима в виде естественного разложения:

(4.24)

Весьма существенным обстоятельством является (N/2)-кратное вырождение естественных заселенностей n1 = ...nN/2 = 2. Это вырождение обусловлено однодетерминантным приближением и может быть названо случайным в отличие от вырождения, наблюдаемого при достаточно высокой симметрии молекулы. Иными словами, в одноэлектронном (точнее однодетерминантном) приближении все МО, определяемые уравнением (4.23), классифицируются на "занятые" МО, заселенные парами электронов, и "свободные" или виртуальные МО, не включаемые в детерминант Слэтера и характеризуемые нулевыми электронными заселенностями.