Выбрать главу

(4.36)

Недостатком метода Бойса является то, что он не обеспечивает эффективного разделения валентных и остовных АО. Например, 1s- и 2s-орбитали сферически-симметричны и никаким преобразованием нельзя изменить расстояния между их центрами тяжести (которое всегда равно нулю). С другой стороны, смешение остовной 1s-орбитали с валентными np-орбиталями должно приводить к увеличению расстояния от нулевого до некоторого конечного (для гибридных АО) значения. Максимуму значения В при этом должна соответствовать тетраэдрическая гибридизация 1s- и nр-АО. В действительности наряду с остовной 1s-орбиталью следует принимать во внимание и валентную ns-AO. Именно она должна смешиваться с другими валентными АО. Но с учетом сказанного выше ясно, что метод Бойса может приводить к завышенному вкладу остовных АО в связывающие МО.

Метод проецирования. Метод проецирования, предложенный в работах Полака [73] и позднее развитый Роби [74], основан на том, что одноэлектронная матрица плотности ρ1(x|x') в однодетерминантном приближении является ядром оператора проектирования на подпространство занятых молекулярных спин-орбиталей. Поэтому для любой нормированной спин-орбитали ψ проекционная норма

(4.37)

удовлетворяет неравенству

(4.38)

причем если спин-орбиталь ψ целиком принадлежит подпространству занятых молекулярных спин-орбиталей, и если спин-орбиталь ψ ортогональна к этому подпространству.

Следуя Полаку, локализованную на атоме А МО, описывающую неподеленную электронную пару или орбиталь внутренней оболочки атома, можно определять как линейную комбинацию орбиталей атома А (т. е. как гибридную АО этого атома):

(4.39)

максимизирующую проекционную норму . Если бесспиновая одноэлектронная матрица плотности ρ(r|r') представлена в базисе АО g матрицей

(4.40)

и базис g характеризуется матрицей перекрывания S, причем S'a = 0 для а, а' ∈ А, то столбец Ua, представляющий искомую гибридную АО ha, является собственным вектором матрицы Q(A) образуемой матричными элементами (SPS)aa' ∈ А, и этот собственный вектор отвечает максимальному собственному значению nа. Когда последнее равно двум, гибридная АО ha будет в точности совпадать с естественной МО, описывающей неподеленную электронную пару; когда na ≈ 2, гибридная АО ha будет аппроксимировать такую орбиталь.

Двух-, трех- ... и K-центровые МО, локализованные на атомных группах (связях) G = (A1,..., AK) и представленные линейными комбинациями вида

(4.41)

определяются в методе проецирования аналогичным образом, т. е. посредством диагонализации матриц Q(G) при условии ортонормированности

(4.42)

Согласно работам [73, 74], процедура локализации МО осуществляется в следующей последовательности:

1) сначала определяются одноцентровые , локализованные на остовных и валентных оболочках отдельных атомов;

2) одноцентровые исключаются из исходного базиса преобразованием

(4.43)

и канонической ортонормировкой линейно-зависимого набора орбиталей g';

3) в полученном ортонормированием базисе, включающем меньшее число орбиталей, чем исходный базис АО g, определяются двухцентровые МО ;

4) если число найденных и в сумме отлично от числа всех занятых канонических МО, аналогичным образом определяются многоцентровые последовательно для К = 3, 4,..., пока число локализованных МО не сравняется с числом занятых канонических МО.

Таблица 6. Одноэлектронная матрица плотности для молекулы метана, представленная в ортогонализованном (по Лёвдину) базису АО

Следует отметить, однако, что такую последовательность построения локализованных МО не всегда можно считать оправданной. Например, нет оснований для поиска локализованных трехцентровых МО диборана в подпространстве занятых МО, более узком, чем рассматриваемое при построении двухцентровых МО этой молекулы.

Существенным недостатком метода проектирования является то, что он приводит к неортогональным наборам локализованных МО. В частности, орбиталь hа, принадлежащая атому А и перекрывающаяся с орбиталью hb, атома В, принадлежит отчасти и последнему атому, а перекрывание МО