Выбрать главу

i

n

a

|

d

4

x

1

…d

4

x

n

Tℒ

0

(x)

1

[

0

(x)

i

]

 …

n!

int

int

ij

×

[

0

(x)

j

]

… ℒ

0

(x)

n

J

0

(x)

i

J

0

(x)

j

J

|

b

Φ

μ

(x)

i

Φ

ν

(x)

j

;

int

int

1

2

здесь символ [ℒ] означает, что член, заключенный в скобки, опущен. Записывая поля φ в виде φ = εδ(x-yi), дифференцируя по переменным ε1 и ε2 и полагая ε1 = ε1 = 0, получаем уравнение Гелл-Манна - Лоу

⟨a|TJ

μ

1

(x)J

ν

2

(y)|b⟩

=

δ

2

δΦ

(x)δΦ

(y)

×

⟨a|T exp i

𝑑

4

z

{

0

int

(z) +

 

i

J

0

(z)Φ

λ

i

(z)

}

|b⟩

=

n=0

in

n!

⟨a|

d

4

x

1

…d

4

x

n

Tℒ

0

int

(x

1

)…

×ℒ

0

int

(x

n

)J

1

(x)J

2

(y)|b⟩ .

(2.4)

Для того чтобы приравнять правую часть (2.4) матричному элементу (2.2), использована формула (доказанная Боголюбовым и Ширковым [45], см. также § 39 и 42; определение функциональной производной дано в приложении 3)

δ2Sφ

δΦ(x) δΦ(y)

Φ = 0

=

TJ

μ

1

(x)J

ν

2

(x) .

(2.5)

Рассмотрим вопрос о релятивистской инвариантности и унитарности S-матрицы. Если оператор U(a,Λ) осуществляет некоторое преобразование из группы Пуанкаре, то должно выполняться соотношение

U(a,Λ)SU

-1

(a,Λ) = S ,

(2.6)

из которого следует, что S-матрица представляет собой релятивистски инвариантный оператор. S-матрица является также унитарным оператором:

S

+

S

=

SS

+

= 1 .

(2.7)

Записав выражение для S-матрицы в виде

S = iΤ ,

где матричные элементы ⟨a|Τ|b⟩ представляют собой так называемую амплитуду перехода системы из состояния |a в состояние |b, получим из (2.7) соотношение для оператора Τ

Im

a

|

Τ

|

b

⟩ = ½

c

|

Τ

|

b

⟩⟨

c

|

Τ

|

b

*

.

all c

(2.8)

(При выводе соотношения (2.8) предполагалась инвариантность S-матрицы по отношению к обращению времени.) При разложении левой и правой частей (2.6) и (2.8) по степеням константы связи g в каждом порядке теории возмущений возникают определенные соотношения. В силу линейности уравнение (2.6) сохраняет свой вид в каждом порядке разложения по константе связи g. Нелинейность же уравнения (2.8) приводит к смешиванию членов разного порядка малости по константе связи. Например, если написать

Τ

=

g

n = 0

g

n

Τ

n

то, ограничиваясь членами второго порядка малости по g, имеем

Im

a

|

Τ

2

|

b

⟩ = ½

 

all c

{

c

|

Τ

0

|

b

⟩⟨

c

|

Τ

2

|

a

*

+ ⟨

c

|

Τ

2

|

b

⟩⟨

c

|

Τ

0

|

a

*

+ ⟨

c

|

Τ

1

|

b

⟩⟨

c

|

Τ

1

|

a

*

}

.

(2.9)

Завершим краткий обзор основных вопросов теории поля введением редукционных соотношений. Рассмотрим амплитуду рассеяния, например для процесса a + b → a' + b', где a и a' - бозоны, описываемые полями Φa и Φa'. Амплитуду рассеяния можно записать в виде

a',b'

|

S

|

a,b

⟩ =

lim

a',b',t'

|

a,b,t

⟩ .

t'→+∞

t→-∞

Если через pi обозначить импульс частицы i и использовать формулу (подробный вывод редукционных соотношений содержится, например, в книге Бьёркена и Дрелла [ 40])

i

2(2π)

3/2

a

+

(p

a

)

=

lim

d

x

e

-ipa⋅x