Выбрать главу

При всей наглядности картины понять, что электроны тоже образуют интерференционную фигуру – а это экспериментально наблюдаемый факт, – очень трудно. Согласно Ньютону, а также здравому смыслу, электроны испускаются из источника, направляются по прямым линиям в сторону щелей (поскольку на них не действуют никакие силы – вспомните первый закон Ньютона), проходят сквозь щели с небольшими искривлениями (если цепляют кромку) и продолжают двигаться по прямой вплоть до экрана. Но в таком случае интерференционная фигура не появится – получится пара полосок, как показано на рис. 2.2.

Можно предположить, что существует какой-то хитрый механизм, посредством которого электроны оказывают друг на друга некое воздействие, в результате чего отклоняются от прямых линий, пройдя через щели. Но это легко проверить: можно поставить эксперимент, посылая из источника на экран всего один электрон зараз. Придется подождать – и медленно, но верно, когда электроны один за другим будут врезаться в экран, выработается система полосок. Это крайне удивительно, потому что структура полосок весьма характерна для интерферирующих друг с другом волн, но ведь наш источник испускает зараз по одному электрону – точку за точкой. Хорошее упражнение для ума: попытаться представить, как такое может быть и почему частица за частицей формируют интерференционную фигуру при выстреле в сторону двух щелей в экране. Упражнение тем лучше, что оно совершенно бесплодно: несколько часов ломания головы должны убедить вас, что представить появление структуры полосок совершенно невозможно. Какими бы ни были испускаемые частицы, они точно не «обычные» частицы. Электроны словно бы «интерферируют сами с собой». Наша задача – создать теорию, которая может объяснить происходящее.

У этой истории есть интереснейшее историческое завершение, которое показывает, какие проблемы интеллектуального плана ставит двухщелевой эксперимент. Джозеф Томсон, получивший Нобелевскую премию за открытие электрона в 1899 году, показал, что электрон – это частица с определенным электрическим зарядом и определенной массой, маленькая песчинка материи. Его сын Джордж Томсон 40 лет спустя получил Нобелевскую премию за доказательство того, что электрон ведет себя не так, как ожидал его отец. Томсон-старший не был неправ: у электрона действительно есть четко определенная масса и электрический заряд, и каждый раз, когда мы его видим, он кажется нам крупинкой материи. Однако он не ведет себя в точности как крупинка материи, что обнаружили Дэвиссон, Джермер и Томсон-младший. Важно заметить, что не ведет он себя и в точности как волна, потому что интерференционная фигура не формируется каким-то плавным добавлением энергии; скорее, она состоит из множества мельчайших точек. Мы всегда можем обнаружить точечные электроны, какими представлял их Томсон-старший.

Возможно, вы уже видите необходимость прибегнуть к предложенному Гейзенбергом способу мышления. То, что мы наблюдаем, – это частицы, поэтому нужно создавать теорию частиц. Наша теория должна к тому же уметь предсказывать появление интерференционных фигур, получающихся, когда электроны один за другим проходят сквозь щели и врезаются в экран. Подробностей того, как электроны движутся от источника к щелям и затем к экрану, мы наблюдать не можем, поэтому им необязательно согласовываться с тем, с чем мы имеем дело в повседневной жизни. И действительно, о «путешествии» электрона можно даже вообще не вести речь. Все, что нам нужно, – выработать теорию, способную предсказать, что электроны при контакте с экраном образуют фигуру, которая получается в ходе двухщелевого эксперимента. Это мы и сделаем в следующей главе.

Чтобы вы не думали, что это просто увлекательный образчик физики микромира, который имеет мало отношения к миру в целом, нужно сказать, что квантовая теория частиц, которую мы разрабатываем для объяснения двухщелевого эксперимента, окажется способной объяснить и стабильность атомов, и цвет лучей, испускаемых химическими элементами, и радиоактивный распад, да, собственно, и все великие тайны, волновавшие ученых в начале XX века. То, что наша система описывает способ поведения электронов, заключенных внутрь материи, позволит понять и то, как работает едва ли не самое важное изобретение XX века – транзистор.