Выбрать главу

В 1900 году Резерфорд писал об этом: «Все атомы, сформировавшиеся в одно и то же время, должны существовать в течение определенного интервала. Это, однако, противоречит наблюдаемым законам трансформации, согласно которым жизнь атома может иметь любую продолжительность – от нуля до бесконечности». Такое хаотическое поведение элементов микромира стало шоком, потому что до того наука была полностью детерминистской. Если в определенный момент вы знали все, что возможно знать о каком-либо предмете, то считалось, что вы сможете с уверенностью предсказать будущее этого предмета. Отмена этого вида предсказательности – ключевая черта квантовой теории, имеющей дело с возможностью, а не с уверенностью, и не потому, что нам не хватает абсолютного знания, но потому, что некоторые аспекты природы, по сути, управляются законами случая. Поэтому сегодня мы понимаем, что просто невозможно предсказать, когда же именно конкретный атом постигнет распад. Радиоактивный распад – это первая встреча науки с игрой природы в кости, поэтому он много лет смущал умы физиков.

Конечно, много интересного происходило и в самих атомах, хотя их внутренняя структура была в то время совершенно неизвестной. Ключевое открытие совершил Резерфорд в 1911 году. Он с помощью радиоактивного источника бомбардировал тончайший золотой лист так называемыми альфа-частицами (сейчас мы знаем, что это ядра атомов гелия). Резерфорд вместе с помощниками Гансом Гейгером и Эрнестом Марсденом, к своему немалому удивлению, обнаружил, что примерно одна из 8000 альфа-частиц не пролетает через золотой лист, как ожидалось, а отскакивает прямо назад. Впоследствии Резерфорд описывал этот момент с характерной образностью: «Это было, пожалуй, самое невероятное событие, которое случалось в моей жизни. Оно было настолько же невероятно, как если бы вы выстрелили из пятнадцатидюймовой пушки в кусок туалетной бумаги, а ядро отскочило бы и поразило вас». Резерфорда все считали харизматичным и прямолинейным человеком: однажды он назвал самодовольного чиновника евклидовой точкой: «У него есть положение, но нет величины».

Резерфорд посчитал, что его экспериментальные результаты можно объяснить только тем, что атом состоит из очень маленького ядра и вращающихся вокруг него по орбитам электронов. В то время он, возможно, имел в виду примерно ту же схему, по которой планеты вращаются по орбитам вокруг Солнца. Ядро имеет почти всю массу атома, почему и способно останавливать свои «15-дюймовые» альфа-частицы и отражать их. У водорода, простейшего элемента, ядро состоит из единственного протона радиусом около 1,75 × 10–15 м. Если вы не знакомы с этой записью, переведем: 0,000 000 000 000 001 75 м, или примерно 2 тысячемиллионмиллионных метра.

Насколько мы можем судить сейчас, одиночный электрон похож на того самодовольного чиновника по Резерфорду, то есть на точку, и вращается по орбите вокруг ядра атома водорода по радиусу примерно в 100 000 раз больше диаметра ядра.

Ядро имеет положительный электрический заряд, а электрон – отрицательный, и это значит, что между ними есть сила притяжения, которая аналогична силе гравитации, удерживающей Землю на солнечной орбите. Это, в свою очередь, означает, что атомы – это в основном пустое пространство. Если представить себе атомное ядро размером с теннисный мяч, то электрон будет меньше пылинки, летящей за километр от этого мяча. Такие цифры весьма удивляют, потому что твердая материя явно не кажется нам такой уж пустой.

Резерфордовские атомные ядра поставили перед физиками того времени ряд проблем. Например, было хорошо известно, что электрон должен терять энергию при движении по орбите вокруг ядра, поскольку все объекты с электрическим зарядом отдают энергию, двигаясь по искривленным траекториям. Эта идея лежит в основе работы радиопередатчиков: электроны колеблются, в результате чего создаются электромагнитные радиоволны. Генрих Герц изобрел радиопередатчик в 1887 году, и ко времени открытия Резерфордом атомного ядра уже существовала коммерческая радиостанция, отправлявшая сообщения через Атлантический океан – из Ирландии в Канаду. Таким образом, уже никто не удивлялся теории вращающихся по орбите зарядов и излучения радиоволн, но это смущало тех, кто пытался объяснить, как же электроны остаются на орбите вокруг ядра.

Столь же необъяснимый феномен представлял собой свет, который испускали разогреваемые атомы. Еще в 1853 году шведский ученый Андерс Ангстрем пропустил искру через трубку, наполненную водородом, и проанализировал полученный свет. Можно было предположить, что газ будет светиться всеми цветами радуги; в конце концов, что такое Солнце, как не светящийся газовый шар? Вместо этого Ангстрем обнаружил, что водород светится тремя отчетливыми цветами: красным, сине-зеленым и фиолетовым, давая три чистые узкие дуги, как у радуги. Вскоре было выявлено, что так ведут себя все химические элементы. У каждого из них есть уникальный цветовой штрихкод. К тому времени как Резерфорд выступил по поводу атомного ядра, ученый Генрих Кайзер завершил работу над шеститомным справочником из 5000 страниц, озаглавленным Handbuch der Spectroscopie («Справочник по спектроскопии»): он описывал все цветные светящиеся линии известных элементов. Вопрос, конечно, зачем? И не только «Зачем, профессор Кайзер?» (наверное, за обедом над его фамилией нередко шутили), но и «Почему так много цветных линий?». Более 60 лет наука, получившая название спектроскопии, была эмпирическим триумфом и теоретическим провалом.