Затем подобные опыты многократно повторялись, в том числе и с летящими «поштучно» электронами, а также с нейтронами и атомами, и во всех них наблюдалась предсказываемая квантовой механикой интерференционная картина. Впоследствии были проведены эксперименты с более крупными частицами. Один из таких опытов (с молекулами тетрафенилпорфирина) был проведен в 2003 году группой ученых из Венского университета во главе с Антоном Цайлингером[12]. В этом классическом двухщелевом эксперименте было четко продемонстрировано наличие интерференционной картины от одновременного прохождения очень большой по квантовым меркам молекулы через две щели.
Наиболее впечатляющий на сегодняшний день эксперимент был недавно проведен той же группой исследователей[13]. В этом исследовании пучок фуллеренов (молекул C70, содержащих 70 атомов углерода) рассеивался на дифракционной решетке, состоящей из большого числа узких щелей. При этом имелась возможность вести контролируемый нагрев летящих в пучке молекул C70 посредством лазерного луча, что позволяло менять их внутреннюю температуру (иначе говоря, среднюю энергию колебаний атомов углерода внутри этих молекул).
Теперь вспомним, что любое нагретое тело, в том числе молекула фуллерена, испускает тепловые фотоны, спектр которых отражает среднюю энергию переходов между возможными состояниями системы. По нескольким таким фотонам можно, в принципе, с точностью до длины волны испускаемого кванта определить траекторию испустившей их молекулы. Отметим, что чем выше температура и, соответственно, меньше длина волны кванта, тем с большей точностью мы могли бы определить положение молекулы в пространстве, а при некоторой критической температуре точность окажется достаточна для определения, на какой конкретно щели произошло рассеяние.
Соответственно, если бы кто-то окружил установку Цайлингера совершенными детекторами фотонов, то он, в принципе, мог бы установить, на какой из щелей дифракционной решетки рассеялся фуллерен. Другими словами, испускание молекулой квантов света дало бы экспериментатору ту информацию для разделения компонент суперпозиции, которую нам давал пролетный детектор. Однако никаких детекторов вокруг установки не было. Как и предсказывала теория декогеренции[14], их роль сыграла окружающая среда.
В эксперименте было обнаружено, что в отсутствии лазерного нагрева наблюдается интерференционная картина, совершенно аналогичная картине от двух щелей в опыте с электронами. Включение лазерного нагрева приводит сначала к ослаблению интерференционного контраста, а затем, по мере роста мощности нагрева, к полному исчезновению эффектов интерференции. Было получено, что при температурах T < 1000K молекулы ведут себя как квантовые частицы, а при T > 3000K, когда траектории фуллеренов «фиксируются» окружающей средой с необходимой точностью — как классические тела.
Таким образом, роль детектора, способного выделять компоненты суперпозиции, оказалась способна выполнять окружающая среда. В ней при взаимодействии с тепловыми фотонами в той или иной форме и записывалась информация о траектории и состоянии молекулы фуллерена. Никакого специального устройства не надо! Совершенно не важно, через что идет обмен информацией: через специально поставленный детектор, окружающую среду или человека. Для разрушения когерентности состояний и исчезновения интерференционной картины имеет значение только принципиальное наличие информации, через какую из щелей прошла частица, а кто ее получит, не важно. Иначе говоря, фиксация или «проявление» суперпозиционных состояний вызывается обменом информацией между подсистемой (в данном случае — частицей фуллерена) и окружением.
Возможность контролируемого нагрева молекул позволила в данном эксперименте изучить переход от квантового к классическому режиму во всех промежуточных стадиях. Оказалось, что расчеты, выполненные в рамках теории декогеренции (о ней пойдет речь ниже), полностью согласуются с экспериментальными данными.
12
13