Масса черной дыры — единственный определяющий фактор радиуса горизонта событий для невращающейся, изолированной черной дыры. В течение долгого времени считалось, что черные дыры — это статичные объекты в пространстве-времени Вселенной.
Но как вычислить энтропию черной дыры?
Эту идею можно проследить до Джона Уилера, размышлявшего о том, что происходит с объектом при падении в черную дыру с точки зрения наблюдателя вдалеке от горизонта событий. С большого расстояния нам бы казалось, что падающий в черную дыру человек асимптотически приближается к горизонту событий, все больше и больше краснея из-за гравитационного красного смещения и бесконечно долго двигаясь по направлению к горизонту из-за эффекта релятивистского замедления времени. Таким образом, информация от чего-либо, упавшего в черную дыру, осталась бы «зашифрованной» на ее поверхности.
Это элегантно решает проблему и звучит разумно. Когда что-то падает в черную дыру, ее масса увеличивается. При увеличении массы увеличивается и ее радиус, а значит, и площадь поверхности. Чем больше площадь поверхности, тем больше информации можно зашифровать.
Это означает, что энтропия черной дыры вовсе не нулевая, а как раз наоборот — огромная. Несмотря на то что горизонт событий относительно мал по сравнению с размерами Вселенной, количество пространства, необходимое для записи одного квантового бита, мало, а значит, на поверхности черной дыры можно записать невероятные объемы информации. Энтропия увеличивается, информация сохраняется, а законы термодинамики сохраняются. Можно расходиться, так?
На поверхности черной дыры могут быть закодированы биты информации, пропорциональной площади поверхности горизонта событий.
Не совсем. Дело в том, что, если черные дыры обладают энтропией, у них должна быть и температура. Как и в случае с любым другим объектом с температурой, от них должно исходить излучение.
Хокинг продемонстрировал: черные дыры испускают излучение в определенном спектре (спектр абсолютно черного тела) и на конкретной температуре, определенной массой черной дыры. Со временем это излучение энергии приводит к потере черной дырой ее массы, согласно известному уравнению Эйнштейна: E=mc2. Если энергия испускается, она должна откуда-то исходить, а это «где-то» должно быть самой черной дырой. Со временем черная дыра будет терять свою массу быстрее и быстрее и в один момент — в далеком будущем — она полностью испарится в яркой вспышке света.
Но если черная дыра испаряется в излучении абсолютно черного тела, определенном только ее массой, что же происходит со всей информацией и энтропией, записанной на ее горизонте событий? Ведь нельзя просто уничтожить эту информацию?
Это корень информационного парадокса черных дыр. Черная дыра должна обладать высокой энтропией, включающей в себя всю информацию о том, что ее создало. Информация о падающих в нее объектах записывается на поверхности горизонта событий. Но при распаде черной дыры посредством излучения Хокинга горизонт событий исчезает, оставляя за собой только излучение. Это излучение, как предполагают ученые, зависит только от массы черной дыры.
Представим, что у нас есть две книги — об абсолютной бессмыслице и «Граф Монте-Кристо» — содержащие разные объемы информации, но идентичные по массе. Мы кидаем их в идентичные черные дыры, от которых ожидаем получить эквивалентное излучение Хокинга. Для стороннего наблюдателя все выглядит так, будто информация уничтожается, а учитывая то, что мы знаем об энтропии, это невозможно, так как нарушило бы второй закон термодинамики.
Если мы сожжем эти две книги одинакового размера, то вариации молекулярных структур, порядок букв на бумаге и другие мелкие различия содержали бы в себе информацию, при помощи которой мы могли восстановить информацию в книгах. Она может прийти в полный беспорядок, но сама по себе никуда не денется. Тем не менее информационный парадокс черных дыр представляет собой реальную проблему. Как только черная дыра испаряется, от этой изначальной информации не остается ни следа в наблюдаемой Вселенной.
Симулированный распад черной дыры приводит не только к испусканию излучения, но и распаду центральной вращающейся массы, удерживающей стабильность большинства объектов. Черные дыры — нестатичные объекты, изменяющиеся со временем. Однако на горизонтах событий черных дыр, сформировавшихся из разных материалов, должна сохраняться разная информация.