В этом случае мы больше не можем ожидать, что удвоение силы поля удвоит и намагничивание. Последнее с увеличением поля будет увеличиваться все меньше и меньше, приближаясь к тому, что называется «насыщением». Это ожидание также количественно подтверждается экспериментом.
Заметьте, что такое поведение целиком зависит от огромного количества молекул, которые совместно участвуют в создании наблюдаемого намагничивания. В противном случае магнетизм совсем не был бы постоянным и изменялся бы совершенно нерегулярно от одной секунды к другой, свидетельствуя о превратностях в борьбе между полем и тепловым движением.
Б. Второй пример (броуновское движение, диффузия)
Если вы наполните нижнюю часть закрытого стеклянного сосуда туманом, состоящим из мельчайших капелек, вы увидите, что верхняя граница тумана постепенно понижается с совершенно определенной скоростью, зависящей от вязкости воздуха и от размера и удельного веса капелек. Но если вы посмотрите на одну из капелек под микроскопом, то вы увидите, что она не опускается с постоянной скоростью, а выполняет весьма неправильное движение, так называемое броуновское движение, которое только в среднем соответствует постоянному снижению.
Эти капельки, хотя и не являются атомами, но уже достаточно малы и легки, чтобы чувствовать толчки единичных молекул, которые непрерывно молотят по их поверхности. Толкуемые таким образом капельки могут только в среднем следовать влиянию силы тяжести.
Этот пример показывает, какие удивительные и беспорядочные впечатления получали бы мы, если бы наши органы чувств были восприимчивы к ударам уже немногих молекул.
Имеются бактерии и другие организмы, столь малые, что они сильно подвержены этому явлению. Их движения определяются тепловыми прихотями окружающей среды; они не имеют выбора. Если они обладают собственной подвижностью, то они могут все же передвигаться с одного места на другое, но только с известными трудностями, поскольку тепловое движение швыряет их как маленькую лодку в бурном море.
Очень сходно с броуновским движением явление диффузии. Представьте себе сосуд, наполненный жидкостью, скажем водой, с небольшим количеством какого-нибудь окрашенного вещества, растворенного в ней, например марганцовокислого калия, но не в равномерной концентрации, где точки означают молекулы растворенного вещества (перманганата) и где концентрация уменьшается слева направо. Если вы оставите эту систему в покое, наступает весьма медленный процесс «диффузии». Перманганат распространяется в направлении слева направо, то есть от места более высокой концентрации к месту более низкой концентрации, пока, наконец, не распределится равномерно по всей воде.
В этом довольно простом и, очевидно, не особенно интересном процессе замечательно то, что он ни в какой степени не связан с какой-либо тенденцией или силой, которая, как это можно было бы подумать, влечет молекулы перманганата из области большей тесноты в область меньшей тесноты, подобно тому как, например, население страны расселяется в ту часть, где больше простора. С нашими молекулами перманганата ничего подобного не происходит. Каждая из них ведет себя совершенно независимо от всех других молекул, с которыми она встречается весьма редко.
Каждая из них, как в области большей тесноты, так и в более свободной части, испытывает одну и ту же судьбу. Ее непрерывно толкают молекулы воды, и таким образом она постепенно продвигается в совершенно непредсказуемом направлении, – иногда в сторону более высокой, иногда в сторону более низкой концентрации, а иногда наискось. Характер движения, которое она выполняет, часто сравнивали с движением человека, которому завязали глаза на большой площади и который хочет «пройтись», но не придерживается определенного направления и, таким образом, непрерывно изменяет линию своего движения.