Выбрать главу
Нечеткая логика

В статье 1927 года, представившей миру принцип неопределенности, Вернер Гейзенберг установил, что в квантовом мире имеются пары физических величин, которые нельзя одновременно измерить на произвольном уровне точности.

Одну такую пару образуют положение и импульс, по сути являющиеся мерой движения квантовой частицы. Если вы знаете координату частицы x с определенной погрешностью Δx, то можете описать неопределенность Δp ее импульса p математическим неравенством Δx Δp≥ ħ/2. Здесь ħ — постоянное число природы, известное как приведенная постоянная Планка. Согласно неравенству результат умножения Δx и Δp не может быть меньше ħ/2: то есть чем больше мы знаем о том, где частица находится (чем меньше Δx), тем меньше мы можем знать о том, насколько быстро она движется (тем больше Δp), и наоборот.

Принцип неопределенности также применяется к другим парам величин, например энергии и времени, а также спинам, или поляризациям, частиц в разных направлениях. Соотношение неопределенностей «энергия-время» является причиной того, почему частицы могут появляться из ничего и исчезать снова. Пока энергия ΔE, которую они для этого берут, и время Δt, в течение которого они присутствуют, не нарушают связь неопределенностей, нечеткая логика квантовой механики остается соблюденной.

Окончательное доказательство квантовой таинственности

С 30-х годов XX века физики спорили о наличии более глубокого уровня реальности, который мог бы объяснить странности квантового мира, в частности запутанность, серьезно подтачивающую фундамент нашего понимания устройства мира. И в 1964 году ирландский физик Джон Белл показал, насколько серьезно. Он разработал математический способ определения того, на самом ли деле измерение одной квантовой частицы (скажем, фотона света) может сразу же изменить результат измерения другой частицы или же за это ответственно некое не квантовое воздействие.

Неравенства Белла включают в себя максимальную корреляцию состояний удаленных друг от друга частиц в опытах при соблюдении трех «разумных» условий: 1) у экспериментаторов есть свобода воли организовывать предметы так, как они хотят; 2) измеряемые свойства частиц реальны и существовали раньше, а не появляются только во время измерения; и 3) никакое воздействие не распространяется быстрее скорости света – мирового предела скорости.

С тех пор множество проведенных экспериментов показало, что квантовая механика регулярно нарушает неравенства Белла, давая корреляцию на гораздо более высоких уровнях, чем при соблюдении их условий. Самым недавним и неопровержимым примером такого рода является эксперимент, который в 2015 году провела группа физиков под руководством Рональда Хансона в Делфтском техническом университете (Нидерланды).

Стоит внимательно изучить, что они сделали и зачем. Чтобы это понять, нам нужно вернуться назад в 30-е годы XX века, когда физики пытались примириться со странными предсказаниями появляющейся науки – квантовой механики. Теория предполагала, что запутанность частиц может выражаться следующим образом: измерение одной частицы внезапно действует на измерение другой, даже если их разделяет огромное расстояние. Следствием было то, что частицы как будто могли сообщаться быстрее любого сигнала, проходящего между ними. Кроме того, теория также подразумевала, что свойства частиц зафиксированы только в тот момент, когда они измеряются, а до этого они существуют в расплывчатом облаке вероятностей.

«Нонсенс», – сказал Эйнштейн. Он и другие руководствовались принципом локального реализма, который в общем смысле гласит, что только находящиеся поблизости объекты могут влиять друг на друга и что Вселенная «реальна», а значит, наши наблюдения не приводят к ее появлению путем замораживания расплывчатых вероятностей. Они утверждали, что квантовая механика является неполной и что «скрытые параметры», действующие на некотором более глубоком уровне реальности, могут объяснить кажущуюся таинственность теории. С другой стороны, физики вроде Нильса Бора настаивали на том, что мы просто должны принять новую квантовую реальность, поскольку она объясняет трудности, которые не вписываются в классические теории света и энергии.