Рис. 2.1. Обновленные варианты классического опыта Юнга с двумя щелями показывают, что частицы похожи на волны еще и в зависимости от того, как их детектировать.
Одним из наиболее известных противостояний в науке была вражда между Альбертом Эйнштейном и Нильсом Бором (см. рис. 2.2). С конца 20-х до начала 30-х годов XX века эти ученые боролись за будущее физики. Эйнштейн не мог принять вопиющую случайность и непознаваемость квантовой механики и потому пытался опровергнуть ее, разработав набор оригинальных мысленных экспериментов. Но как только Эйнштейн, по его мнению, приближался к обнаружению противоречий, лежащих в основе квантовой теории, Бор доказывал, что он ошибается. Несмотря на все свои спорные составляющие, квантовая механика одержала победу.
Рис. 2.2. Датский физик Нильс Бор.
Запутанность
Согласно идее квантовой запутанности, частицы могут быть связаны таким образом, что изменение квантового состояния одной частицы мгновенно повлияет на другую, даже если их разделяют световые годы. Это «жуткое действие на расстоянии», как говорил Эйнштейн, – серьезный удар по цельности нашего понимания того, как устроен мир. Эрвин Шрёдингер (см. рис. 2.3) назвал это «определяющей особенностью» квантовой теории. Эйнштейн не мог решиться поверить во все это, считая доказанным наличие у квантовой теории серьезных недостатков.
Рис. 2.3. Эрвин Шрёдингер.
Суперпозиция
Как бы вы ни старались, вы не сможете находиться в двух местах одновременно. Но если вы – электрон, то появление сразу в нескольких местах – это ваш образ жизни. Законы квантовой механики говорят нам, что субатомные частицы существуют в суперпозиции состояний, пока не будут измерены и обнаружены в одном определенном – когда волновая функция коллапсирует.
Так почему бы нам не проделать коронный номер электрона? Кажется, что, как только объект становится достаточно большим, он теряет свои квантовые свойства – этот процесс известен как декогеренция (см. главу 7). В основном это связано с тем, что более крупные объекты взаимодействуют с окружением, заставляющим занять то или иное положение. Эрвин Шрёдингер отлично продемонстрировал абсурдность суперпозиции на больших масштабах с помощью эксперимента с котом, который и жив, и мертв одновременно и чья судьба зависит от распада радиоактивного атома – случайного квантового процесса.
В 1926 году Эрвин Шрёдингер выдвинул идею о том, что все квантовые частицы – от атомов до электронов – можно описать неосязаемыми сущностями, распространяющимися в пространстве подобно ряби на поверхности озера. Он назвал их волновыми функциями, которые четко объяснили, почему у электронов в атомах именно такие значения энергии, а не какие-то другие.
Все волны можно описать математически. Например, распространяющаяся по пруду рябь – это возмущение на воде; ее волновая функция описывает форму ряби в любой точке и в любой момент времени, тогда как нечто, называемое волновым уравнением, предсказывает движение ряби. Из труда де Бройля Шрёдингер понял, что у каждой квантовой системы есть связанная с ней волновая функция, хотя он затруднялся объяснить, что является возмущением в случае атома или электрона. Несмотря на это, работа Шрёдингера привела к радикально новой картине квантового мира как места, где определенности уступают дорогу вероятностям.
Волновая функция Шрёдингера является в этой картине центральным элементом, поскольку в ней закодированы все возможные варианты поведения квантовой системы. Изобразим простой случай атома, летящего в пространстве. Это квантовая частица, так что вы не можете сказать с уверенностью, куда он полетит. Если же вам известна его волновая функция, то с ее помощью можно просчитать вероятность нахождения атома в любом месте, каком вы пожелаете.