Выбрать главу

Пожалуй, еще лучше сравнить нуклон со спелым абрикосом или персиком. В центре косточка керн, а вокруг — мякоть, плотная внутри и очень мягкая, рыхлая снаружи.

И еще одно важное отличие строения нуклона от атома. Электрон присутствует в атоме всегда, а мезон рождается и тут же исчезает. Нуклон как бы пульсирует или, лучше сказать, мигает. Вспыхнет мезонным «светом» и погаснет, снова вспыхнет и снова погаснет... Его структура — это усредненный или, как говорят физики, динамический эффект.

Получается, что при малом увеличении окружающие нас тела — твердые, а при большом увеличении они выглядят как динамические пульсирующие системы.

Сложной внутренней структурой должны обладать все частицы; любая из них окружает себя облаком рождающихся и исчезающих дочерних частиц. Правда, сведения об этом пока еще скудны, но о мезоне, например, кое-что определенное уже известно.

Прежде всего внесем важное уточнение. Открыто много различных типов мезонов — несколько десятков. Друг от друга они отличаются массой и другими свойствами. Один из самых легких, входящий в состав нуклона мезон, называют пи-мезоном. Он раз в семь легче протона. Частицы, образующиеся при слиянии двух и трех пи-мезонов, называют ро- и омега-мезонами. Все эти названия происходят от соответствующих греческих букв π, ρ, ω, которыми физики обозначают частицы.

Есть впрочем, еще К-мезоны, свойства которых в свое время так поразили физиков, что они отнесли эти частицы к разряду странных. Это название так за ними и сохранилось. Их масса составляет около половины массы нуклона. Ну, а самые тяжелые мезоны, обозначаемые большими буквами X и Y, весят раз в сто больше протона и нейтрона — примерно столько же, сколько атом брома или даже молибдена! Не исключено, что в природе существуют и более тяжелые частицы.

Можно составить целый каталог мезонов. Все они — нестабильные, короткоживущие частицы. Самый устойчивый и самый легкий из них, мю-мезон, живет приблизительно миллионную долю секунды и распадается на электрон и нейтрино. Заряженные пи-мезоны живут в 100 раз меньше, а их нейтральный брат еще в 100 миллионов раз меньше — около 10-10 секунд. Нейтральный пи-мезон почти мгновенно распадается на два фотона с большой энергией: вещество превращается в коротковолновое электромагнитное излучение.

Кстати сказать, с открытием пи- и мю-мезонов произошла занятная путаница. В середине 30-х годов мезон был теоретически предсказан физиком Хидеки Юкавой. Понадобился он для того, чтобы объяснить сильное притяжение нуклонов внутри ядра. Из расчетов следовало, что мезон должен быть в 200—300 раз тяжелее электрона. Вскоре частицу с такой массой обнаружили в космических лучах. Однако, к удивлению физиков, она легко проходила сквозь толстые железные и свинцовые экраны, и оставалось загадкой, каким же образом столь слабо взаимодействующая частица может так плотно связывать нуклоны в ядрах. Ответ был найден уже после войны. Оказалось, что существует не один, а два мезона: один — более легкий и слабо взаимодействующий (его-то и открыли в предвоенные годы) и другой — предсказанный Юкавой сильно взаимодействующий пи-мезон. Физиков сбила с толку близость масс этих частиц. Да никто в то время и не думал, что мезонов, может быть много. Все были уверены, что раз частицы «элементарные», то их число невелико.

Овальное, плоское, как изображение на медальоне, лицо с короткими прямыми бровями и высоким, почти квадратным лбом — таков портрет знаменитого теоретика Юкавы (до женитьбы его имя было Хидеки Огава, но, женившись, он, по японскому обычаю, взял фамилию жены — Юкава). Жизнь Юкавы не богата внешними событиями. Он не строил реакторов и не создавал атомных бомб, как Энрико Ферми, и не бежал из оккупированного фашистами родного города в бомбовом отсеке самолета, подобно Нильсу Бору. Если не считать коротких научных командировок, то всю свою жизнь он прожил в древней столице Японии Киото — небольшом, тихом научном городке вблизи Токио. Много зелени, храмов, памятников старины...