Что же делать нам, находящимся на вращающейся площадке? Как определиться относительно окружающего мира?
Возможны два выхода.
Первый — отказаться от законов Ньютона и создать новую механику, приспособленную к условиям, существующим во вращающихся лабораториях.
Этот путь приводит к неоправданным усложнениям всех расчетов. Поэтому ученые идут по другому пути.
Они сохраняют законы Ньютона, но вводят во второй закон механики, связывающий изменение скорости с действующими силами, новые силы. Такие новые силы, которые позволяют на основе законов Ньютона описывать все явления, происходящие в системах, обладающих ускорением. Эти новые силы и есть силы инерции. Силы инерции, не вошедшие в законы механики, полученные Ньютоном.
Это именно те новые силы инерции, которые действуют на предметы, находящиеся на вращающейся площадке. Они малы для предметов, закрепленных вблизи оси вращения и увеличиваются вместе с расстоянием от этой оси. Обычно эти силы называют центробежными силами инерции, чтобы отличить их от центробежных сил, возникающих, когда предмет вращается по отношению к неподвижной площадке (например, груз, который человек вращает на веревке, не изменяя своего положения).
Если же предмет движется относительно вращающейся площадки, то для описания его движения при помощи законов Ньютона, необходимо учесть и силы, открытые Кориолисом. Мы знаем, что ему пришлось привлечь их для того, чтобы устранить противоречия с законами Ньютона, возникающие при учете суточного вращения Земли.
Все, с чем мы познакомились, связано с тем, что принцип относительности Галилея применим только к инерциальным системам — неподвижным или движущимся прямолинейно с постоянной скоростью. Этот принцип, как показал Галилей, не позволяет человеку или механическому прибору, находящемуся под палубой корабля, определить (не выглядывая наружу) движется ли корабль с постоянной скоростью или он неподвижен.
Вращение связано с изменением направления скорости движения, поэтому на вращающейся площадке принцип относительности Галилея не применим. Именно это позволяет при помощи механических опытов установить факт вращения. Для этого не нужно обращаться к предметам, находящимся за пределами вращающейся площадки.
Но для того, чтобы пользоваться в этих условиях законами Ньютона необходимо учесть силы инерции, возникающие на вращающейся площадке.
Внимательный читатель вправе спросить: зачем эти усложнения, зачем эти новые силы инерции? Ведь я, глядя со стороны на вращающуюся площадку, могу описать все, что там происходит. Описать при помощи старых добрых законов Ньютона, не добавляя в них никаких сил инерции, неизвестных Ньютону.
Этот вопрос поставлен правильно. Поэтому он нуждается в ответе.
Первая часть ответа такова. Глядя со стороны на предмет, прикрепленный к вращающейся площадке, мы, естественно, видим его вращающимся. Для того, чтобы описать его движение при помощи математики пришлось бы провести вычисления на основе законов Ньютона. Это приведет нас к уравнению окружности, по которой предмет движется так, что его скорость остается постоянной по величине, но непрерывно изменяется по направлению. Вдобавок мы получили бы сведения о деформации гвоздя, удерживающего предмет на вращающейся площадке.
Для человека, вращающегося вместе с площадкой, все выглядит много проще. Предмет, прикрепленный гвоздем к площадке, неподвижен относительно нее. Гвоздь изгибается потому, что он противостоит влиянию силы инерции, действующей по направлению от оси вращения тем сильнее, чем дальше от оси закреплен предмет.
Итак, первый ответ таков: явление выглядит проще и может быть описано проще, если писать уравнения Ньютона, считая предмет неподвижным относительно вращающейся площадки. Считая его неподвижным несмотря на то, что он, вместе с нами, находится на вращающейся площадке. «Плата» за такое упрощение невелика. Нужно лишь правильно учесть действие сил инерции.
Вторая часть ответа нам уже известна. Это закон Бэра. Для того, чтобы его установить, достаточно лишь наблюдательности и умение объединить ряд наблюдений в единую закономерность.
Объяснить причину, приводящую к этому закону, невозможно, если не учесть суточного вращения Земли.
Если бы небо было всегда затянуто непроницаемыми облаками, не позволяющими наблюдать Солнце и звезды, исследователь мог бы на основании закона Бэра установить факт суточного вращения Земли. При этом физик, знакомый с законами Ньютона, должен был бы попросту учесть течение воды и возникающую при этом силу инерции — Кориолисову силу.