Trois semaines plus tard, Karlychev revint à la clinique de Bobrychev. Son article était déjà prêt. Les conclusions du professeur Bobrychev y tiendraient une place substantielle. Les Kiéviens ne manqueraient d’être impressionnés par le témoignage de Bobrychev. Quant aux conclusions du professeur, leur nature ne faisait aucun doute.
Le professeur reçut Nicolas dans son cabinet mais, à la différence de la fois précédente, au lieu de rester assis dans son fauteuil, il arpentait la pièce à pas rapides en fuyant le regard de Nicolas.
Il déclara au reporter d’une voix coupable qu’il avait fait l’essai de la « préparation », de « l’eau », corrigea-t-il, sur deux malades souffrant d’une vieille gastrite et sur un autre atteint d’une ulcère et dans les trois cas il avait constaté, non pas la guérison certes, mais une indéniable amélioration. Voilà. Après quoi le professeur eut un geste désabusé comme pour s’excuser, marmonna quelque chose sur les inexplicables mystères de la nature et laissa Nicolas seul, en proie à une extrême perplexité.
Une seconde analyse chimique effectuée cette fois avec un soin méticuleux confirma que l’eau était tout à fait identique à celle du Dniepr. Cependant l’analyse bactériologique révéla une absence de microbes presque absolue, mais cela pouvait être dû au fait qu’elle avait été bouillie.
Soudoyé, un servant du monastère se montra assez loquace. Il déclara qu’il apportait chaque jour neuf seaux d’eau dans la cellule du père Jonas. Celui-ci versait l’eau dans un grand baquet au fond duquel se trouvait « tout un tas » de pièces d’argent. Le servant n’en savait pas davantage.
L’article devant exposer la fraude du « saint guérisseur » ne put donc paraître à cette époque. Il ne fut publié que trois ans plus tard. Sa publication fut permise par certaines circonstances dont il sera question dans les chapitres suivants.
Voilà donc terminées les deux histoires que j’ai cru devoir présenter au lecteur. Je prévois deux questions tout à fait légitimes : pourquoi parle-t-on d’un trafiquant malchanceux et d’un saint imaginaire dans un livre consacré aux problèmes de la chimie moderne ; en supposant même que l’auteur les ait introduites simplement afin de distraire le lecteur, qu’y a-t-il de commun entre elles ?
Une substance pure . . . C’est difficile a obtenir
Le chapitre précédent concernait la chasse opiniâtre et inlassable dont les matières infinitésimales ont fait l’objet de la part des chimistes. Atome par atome, microgramme par microgramme, ceux-ci ont patiemment rassemblé des closes d’éléments chimiques excessivement réduites. Ces « chasseurs » savaient que les microgrammes de nouveaux éléments isolés par eux apporteraient à la chimie des « tonnes » de renseignements extrêmement précieux.
Dans ce qui suit nous aurons de nouveau affaire à des chimistes « chasseurs ». Et comme précédemment il sera question de chasse aux quantités de substance réduites et infiniment petites.
Mais dans le présent chapitre les « chasseurs » devront rechercher les quantités réduites de substances afin, non pas de les amasser, mais au contraire de les éliminer de la matière étudiée.
En procédant par ordre, il nous faut sans doute commencer par le chimiste Kohlrausch, célèbre savant allemand de la fin du siècle dernier. Il consacra plusieurs années de son activité scientifique à … la distillation incessante d’un vase à un autre de la même portion d’eau.
Au bout de quatre ans le directeur de l’institut où travaillait Kohlrausch hésitait à faire entrer ses invités dans le laboratoire du chercheur, sachant qu’il se trouverait toujours un plaisantin pour faire allusion à l’Académie des sciences de Laputa.
Mais les amateurs des Voyages de Gulliver avaient grand tort de faire assaut d’esprit. A la différence des savants de l’île volante de Laputa, Kohlrausch poursuivait des objectifs véritablement scientifiques : l’obtention d’une eau aussi pure que possible.
Mais la purification de l’eau est-elle chose si difficile qu’il soit nécessaire de lui consacrer plusieurs années ?
Prenons un exemple des plus ordinaires dans l’activité quotidienne du chercheur chimiste. Admettons que celui-ci ait besoin d’eau pure. Pas aussi pure sans doute que celle que cherchait à obtenir Kohlrausch et que finalement il obtint ! Simplement d’eau propre pour préparer une solution de quelque substance, de préférence libre d’impuretés.
Du robinet il fait couler dans une cornue de l’eau qui, à son point de vue de chimiste, est non seulement sale mais boueuse. Cette eau contient une grande quantité de divers sels de sodium, potassium, calcium et magnésium. Pendant son passage dans les tuyauteries, l’eau s’est également chargée d’une grande quantité de fer, imperceptible certes au palais de celui qui la boit mais largement suffisante pour que le chimiste puisse en détecter la présence à l’aide de sulfocyanate de potassium. La quantité de chlore ajoutée dans l’eau à la station de purification est suffisante pour que l’addition de quelques gouttes d’azotate d’argent lui donne un aspect laiteux révélant la précipitation de chlorure d’argent. En outre l’eau renferme une quantité considérable (toujours du point de vue du chimiste) de substances organiques : minuscules débris végétaux, bactéries, etc. L’eau du robinet contient en solution non pas une grande mais une énorme quantité d’air. On peut s’en assurer en observant un verre d’eau froide tirée du robinet : il se dépose sur les parois du verre un grand nombre de petites bulles d’air.
L’eau ne contient-elle pas également du gaz carbonique en solution ? Et du gaz sulfureux, que les eaux des rivières absorbent ne fût-ce qu’en quantité insignifiante en coulant à proximité de n’importe quelle usine utilisant le charbon comme combustible ? Et du phénol que le chef d’entreprise de quelque usine chimique a, par coupable négligence, fait déverser dans l’eau de la rivière quelque part en amont ? Bref, on peut dire que l’eau du robinet en question contient, outre de l’hydrogène et de l’oxygène, un bon tiers au moins des éléments de la classification périodique de Mendéléev. Quand bien même toutes ces impuretés seraient inoffensives pour l’homme buvant cette eau, elles gênent le chimiste. Aussi doit-il les éliminer.
Il commence par faire bouillir l’eau avec une solution alcaline de permanganate de potassium pour oxyder la plupart des substances organiques qu’elle contient. Puis il fait bouillir l’eau de nouveau avec une solution acide de permanganate, de façon à éliminer définitivement toutes les matières organiques. L’eau doit être ensuite distillée. On la débarrasse ainsi de la plupart de ses impuretés, c’est-à-dire des sels métalliques et d’une partie considérable de l’air. L’eau distillée ainsi obtenue est loin d’être pure : elle contient encore une quantité relativement importante d’air et presque tout son gaz carbonique. Comme toutes ces opérations s’effectuent dans des récipients de verre, l’eau renferme beaucoup de soude caustique et d’acide silicique en provenance du verre.
On fait à nouveau bouillir cette eau distillée pendant plusieurs heures pour éliminer au maximum les gaz qu’elle contient, y compris le chlore, puis on la verse dans un alambic. Cet appareil et le récipient destiné au distillât sont en platine, le réfrigérant où se condensent les vapeurs d’eau étant en étain. Ces métaux sont presque insolubles dans l’eau. Il convient de prendre des précautions pour éviter que l’eau n’entre en contact avec l’air, car elle absorberait alors à nouveau de l’oxygène, de l’azote et du gaz carbonique. L’eau ainsi obtenue est de l’eau dite bi-distillée. Assez ! Cette eau, le chimiste peut déjà s’en servir.