Выбрать главу

Les déclarations ci-dessus ne sont-elles pas entièrement contradictoires ? Non, il n’y a là en réalité aucune contradiction. Le premier article date en effet du début du siècle, le second des années 1920 et le troisième est récent. Le lecteur comprend à présent pourquoi une substance qui, il y a une soixantaine d’années, paraissait pure n’a pas gardé de nos jours son ancienne « réputation ».

Il est très intéressant de voir, ne serait-ce que brièvement, comment les chimistes procèdent actuellement pour obtenir des substances d’une telle pureté.

Disons tout de suite que l’obtention de corps extra-purs en grandes quantités n’a été rendue possible que grâce aux progrès sensationnels de la chimie analytique. Avant d’éliminer les impuretés d’une substance il convient tout d’abord de savoir de quelles impuretés il s’agit et ensuite quelles en sont les quantités présentes. C’est à la chimie analytique de fournir les réponses. Et plus le degré de purification est poussé, plus les procédés de cette science doivent être précis ; en effet, moins il reste d’impuretés, plus les analyses doivent être minutieuses.

Il n’est plus question maintenant d’employer les procédés extrêmement sensibles d’analyse chimique dont nous avons parlé au début de notre ouvrage. L’analyse des matières semi-conductrices a exigé des chimistes un renouvellement complet de leurs méthodes de recherche.

Il suffira de choisir deux des procédés dont dispose la chimie analytique pour illustrer la précision dont elle est capable.

L’une des plus récentes méthodes d’analyse est basée sur la radio-activité. Le métal à l’état pur est irradié à l’aide de neutrons qui rendent radio-actifs une partie de ses atomes, les atomes d’impuretés acquérant également une radio-activité artificielle. Or, la nature des radiations varie considérablement d’un élément radio-actif artificiel à un autre. En déterminant la quantité de chaque type de radiation, il est donc aisé de déduire la quantité et la nature des impuretés que contient le métal. Cette méthode permet de déceler des quantités d’impuretés de l’ordre de 10–12 g.

Pour les semi-conducteurs on peut employer une méthode d’analyse particulière basée sur le fait que la conductibilité des matières semi-conductrices dépend pour l’essentiel de la présence d’impuretés. Comme la conductibilité constitue une propriété particulièrement importante des semi-conducteurs, les matières servant à leur fabrication doivent être d’une pureté exceptionnelle.

On ne saurait citer tous les procédés qu’utilisent les chimistes pour obtenir des corps extrapurs de même qu’il est impossible, par exemple, d’étudier la géographie de notre planète entière en une leçon. Pour l’essentiel, toutes ces méthodes ressemblent de très près à celles dont nous avons parlé à propos de la purification de l’eau. Il est cependant indispensable d’examiner quelques-uns des procédés les plus intéressants dont on se sert pour obtenir des substances à « neuf » ou « dix neufs ».

Parlons d’abord des laboratoires dans lesquels s’effectuent ces opérations. Le personnel de ces établissements appartient à une catégorie bien particulière. Ils ont une peur bleue des courants d’air, non pas parce qu’ils craignent de s’enrhumer car ce sont, en général, des jeunes en excellente santé, mais parce qu’un courant d’air peut introduire dans le local des parcelles de matière susceptibles de souiller la substance à purifier. Le plus petit grain de poussière qui passerait inaperçu de la ménagère la plus méticuleuse les émeut. Dans ces laboratoires il ne sied pas de marcher vite ou de parler à haute voix : des mouvements brusques peuvent faire tomber des vêtements les restes de poussière que l’aspirateur placé à l’entrée du local n’a pas pu faire disparaître. Les murs et plafonds sont absolument lisses et luisants : aucun grain de poussière ne pourrait y adhérer. Toutes les manipulations se font à l’aide d’instruments spéciaux rappelant des pincettes à long manche, les mouvements devant être aisés et prudents… Une atmosphère de ce genre risque fort de rebuter les non-initiés.

Mais cette impression se dissipe dès que l’on fait plus amplement connaissance avec la façon dont ces gens à tablier de matière plastique effectuent l’ascension de l’un des pics les plus vertigineux de la science moderne, celui des « neuf décimales ». Voici l’un des plus récents appareils servant à l’obtention de matières extra-pures, dans lequel se déroule l’opération nommée fusion par zones.

Un four électrique disposé autour d’un tube de quartz se déplace lentement le long de ce tube qui contient un petit lingot de germanium de forme allongée placé sur un support spécial.

Extérieurement, l’installation n’a rien d’extraordinaire, On peut voir la zone de fusion se déplacer le long du lingot de germanium. A l’endroit où le four passe au-dessus du métal, celui-ci fond et se transforme en un liquide visqueux. Le four continuant à se déplacer, le métal se refroidit lentement.

Lors de la fusion du métal les impuretés contenues dans le germanium préfèrent rester dans la zone liquide. Pourquoi ? Parce que lorsque le métal fondu se solidifie à nouveau, ses atomes se combinant les uns aux autres expulsent les « étrangers » de leur réseau cristallin contraignant ces derniers à passer dans la zone liquide. En circulant le long du lingot de métal la zone liquide entraîne une partie considérable des impuretés. Quand elle atteint finalement l’extrémité du lingot et se solidifie, on la sectionne, le germanium possédant alors un degré de pureté beaucoup plus élevé qu’auparavant.

Cette méthode est la plus répandue, cependant elle n’est pas toujours utilisable. Elle ne convient pas par exemple à un autre semi-conducteur, le silicium, voisin du germanium dans la classification périodique, car il ne fond qu’à 1 400°, c’est-à-dire à une température beaucoup plus élevée que le germanium. A une température aussi importante les atomes de la quasi-totalité des corps étrangers proches tendent à entrer en réaction avec le silicium, notamment les atomes de l’air environnant et ceux du creuset contenant le lingot de silicium. L’air peut sans doute être éliminé par pompage, mais par quoi remplacer le creuset ?

Dans le cas de certains éléments, les métaux sensibles au champ magnétique, on a adopté une solution très ingénieuse : on se passe tout simplement de creuset : on place le morceau de métal à l’intérieur d’un électro-aimant cylindrique. Le courant étant branché, le morceau de métal reste suspendu en l’air ou plutôt dans le vide car l’air a été éliminé. C’est donc dans le vide que s’effectuent la fusion du métal et les autres opérations.

De cette façon, le métal passe par toutes les phases de purification sans subir le moindre contact avec les parois d’un récipient. Curieux procédé ! Mais comment l’employer avec le silicium qui est insensible au champ magnétique ?

C’est le silicium lui-même qui nous vient en aide. Il se trouve qu’à l’état liquide cet élément possède une tension superficielle extrêmement élevée, de telle sorte que dans un lingot de silicium fondu, la zone de fusion conserve la même forme qu’à l’état solide, la masse fondue étant retenue par une pellicule extérieure de liquide. En somme, le silicium est fondu dans un récipient fait de sa propre substance.

La purification de toute nouvelle matière semi-conductrice implique de nouvelles difficultés. Les exemples ci-dessus illustrent bien l’extrême complexité des problèmes posés par la préparation de substances extra-pures. Le fait est que le degré de pureté désormais réalisable industriellement dépasse tout ce que le savant à l’imagination la plus féconde eût pu voir en rêve il y a seulement dix ans.