Il semble que nous ayons tout dit : pourquoi on obtient des substances extra-pures, comment les chimistes parviennent à un tel degré de pureté, etc. Une seule chose reste obscure : pourquoi l’auteur a-t-il jugé nécessaire de raconter l’histoire de l’infortuné commerçant Eugène O’Winstern et du journaliste de Kiev Nicolas Karlychev ?
Un narrateur garde toujours le plus intéressant pour la fin. J’ai fait de même.
La nouvelle chimie
J’espère qu’on ne me tiendra pas grief de citer quelques phrases d’un manuel de chimie scolaire. Je prie cependant instamment le lecteur de ne pas sauter ces lignes qui ne paraissent arides et dénuées d’intérêt qu’à première vue : « Le zinc est un métal très malléable et plastique qui se dissout difficilement dans les acides, à une température très élevée. »
« Le titane, le manganèse et le chrome servent à la fabrication des articles les plus variés car ils se prêtent aisément au forgeage et au laminage. »
« Le fer est un métal exceptionnellement malléable possédant une résistance élevée à la corrosion. »
« Permettez, direz-vous, je ne sais ce qu’il en est du titane et du manganèse mais quant à l’action des acides sur le zinc c’est la première expérience à laquelle nous avons assisté dès notre premier cours de chimie à l’école et nous nous souvenons parfaitement que l’immersion de grenaille de zinc dans de l’acide — chlorhydrique ou sulfurique — provoquait un abondant dégagement d’hydrogène, l’attaque du zinc s’effectuant d’ailleurs à froid. »
On ne peut qu’être d’accord avec cette objection : le zinc réagit en effet intensément avec les acides. Et pourtant les affirmations ci-dessus sont parfaitement exactes. Seulement elles sont tirées d’un manuel de chimie… de l’avenir. Cette innocente falsification peut se justifier par le fait que cet avenir est tout proche.
Considérons à nouveau le zinc ; il est exact qu’il est attaqué par les acides mais ce comportement est celui du zinc à « trois neufs » : 99,9%. Le zinc à « quatre neufs » (99,99%) est également assez vulnérable aux acides. Mais il suffit de remplacer le quatuor par un quintette, par 99,999, pour que les propriétés du zinc subissent aussitôt un changement inattendu et surprenant, comme sous l’effet d’une baguette magique.
Les acides n’ont aucun effet sur le zinc à « cinq neufs » même à température élevée (le manuel de l’avenir ne s’est donc pas trompé !). A la différence de son confrère « impur » qui se fractionne à la moindre tentative de le soumettre à un façonnement quelconque, ce zinc peut être étiré en fils minces sans se rompre.
Les mêmes transformations merveilleuses s’observent pour tous les autres éléments qu’on a réussi à obtenir à l’état pur et extra-pur. On s’est aperçu que de nombreux métaux considérés auparavant comme cassants sont en réalité malléables. C’est ainsi qu’on a dû réviser les « fiches d’identité » du manganèse, du chrome et du titane. La malléabilité inattendue de ce dernier élément est particulièrement précieuse, car elle a permis de l’utiliser pour fabriquer diverses pièces. Auparavant le titane était considéré comme un métal cassant.
Il est une question qui mérite une attention particulière. Comment se fait-il que des échantillons d’éléments d’une pureté de 99,9, 99,99 et 99,999% se distinguent à peine l’un de l’autre alors qu’il suffit d’atteindre 99,9999 % — le contenu des impuretés se trouvant ainsi réduit de 1 000 fois moins qu’en passant de 99,0 à 99,9 — pour que se produise un brusque changement des propriétés de ces métaux ?
Revenons au zinc. Pour commencer, même lorsque sa pureté augmente, sa propriété de réagir avec les acides n’en est pas pour autant modifiée. Mais que le nombre de neufs vienne à être porté à cinq et il semble qu’il s’agisse aussitôt d’un tout autre élément aux propriétés physiques, chimiques et mécaniques totalement différentes, bref, ne rappelant absolument pas le zinc initial.
Ainsi, il existe plusieurs zincs, plusieurs titanes, plusieurs manganèses au même titre qu’il existe plusieurs benzènes, hexanes, éthers, selon le degré de pureté. C’est alors qu’on se souvient des expériences de Baker !
Nous assistons donc à la naissance d’une nouvelle chimie ; ce qui ne veut pas dire que les données sur les propriétés des cléments chimiques vont perdre leur signification et que nous devrons tous nous remettre à l’étude. Mais en parlant des propriétés d’un élément (ou d’un composé) quelconque, il faudra veiller à préciser son degré de pureté.
La « vieille » chimie est l’oeuvre de dizaines de générations de chimistes. La nouvelle chimie sera créée beaucoup plus vite et pour cette création, la prochaine génération de savants, les écoliers d’aujourd’hui, aura un rôle essentiel. Mais la conquête de ce nouveau sommet de la science moderne exigera une préparation sérieuse.
Dans les petits pots…
Il y a déjà longtemps que je parle des propriétés des éléments extra-purs et je n’ai pas ménagé les exemples. Cependant la raison pour laquelle la présence de quantités infinitésimales d’impuretés dans une substance exerce sur scs propriétés une influence aussi forte reste obscure.
On pourrait sans doute se livrer à ce sujet à bon nombre de réflexions et de conjectures. Mais ce phénomène demeure pour l’instant inexpliqué. Apparemment il y a encore des choses dans la chimie moderne dont même les spécialistes compétents dans ce domaine ne savent rien.
Cependant certaines considérations peuvent jeter quelque lueur sur les étroits sentiers conduisant à la solution de l’énigme qui se perd dans une épaisse forêt de questions. Selon toute vraisemblance, les propriétés chimiques et physiques des corps dépendent pour l’essentiel de l’homogénéité ou de l’hétérogénéité de leur composition chimique.
Lors du passage du courant à travers les métaux, les électrons ne se déplacent pas n’importe comment mais suivent les chaînes d’atomes dont est constitué le réseau cristallin des métaux. Ce fait n’explique pas encore pourquoi la présence d’une impureté, dans la proportion d’un atome pour des milliards, est capable de modifier les propriétés d’un métal, mais il permet de mieux le comprendre. En effet, la ligne téléphonique entre Moscou et Vladivostok a une longueur de quelque dix mille kilomètres. Or, il suffit de découper un millimètre de fil quelque partie long de ces dix mille kilomètres pour que la liaison soit immédiatement interrompue. Eh bien, les atomes des éléments étrangers peuvent jouer le rôle des coupures le long des lignes de transmissions.
Supposez qu’aux heures de pointe dans le métro un individu s’arrête brusquement parmi le flot des usagers et se mette à examiner la mosaïque du plafond ou à lire son journal. Le mouvement normal de la foule en sera immédiatement perturbé. Les injures ne tarderaient pas à pleuvoir sur le malheureux que le contrôleur de service obligerait bientôt à circuler. Mais les électrons ne parlent pas. Rencontrant sur leur passage des atomes étrangers qui refusent de les laisser passer, ils sont obligés de faire un détour. C’est alors que les chimistes assument la fonction de contrôleurs. En purifiant une substance, ils la débarrassent des atomes étrangers et facilitent ainsi le passage des électrons. Voilà pourquoi les métaux extra-purs conduisent le courant électrique bien mieux que leurs analogues « impurs ».