Выбрать главу

Le même phénomène se produisit pour l’yttrium qui « engendra » successivement les éléments erbium, terbium, holmium, thulium, dysprosium et lutécium.

Maintenant nous connaissons parfaitement la raison de l’étonnante ressemblance entre les éléments de numéros d’ordre de 57 à 71. Comme pour les éléments artificiels de la famille des actinides dont nous avons déjà parlé, la couche électronique externe possède une structure identique chez tous les éléments des terres rares.

Etant donné que la séparation des lanthanides les uns des autres est fort difficile, les propriétés de chacun d’entre eux étaient encore très mal connues jusqu’à ces tout derniers temps. La chimie de ces éléments représentait une région de terres vierges en quelque sorte. Mais quand on eut tracé les premiers sillons des recherches scientifiques, des pousses fort drues ne tardèrent pas à apparaître.

Commençons par dire que d’année en année l’appellation même de « terres rares » devient de plus en plus inexacte. On a en effet découvert que l’écorce terrestre en contient beaucoup plus qu’on ne le croyait jusqu’alors. Bien que la proportion des lanthanides soit très faible, seize millièmes pour cent en tout, elle dépasse cependant celle de nombreux autres éléments. Pour les chimistes, la manipulation de quantités s’exprimant à l’aide de six ou sept décimales est chose tout aussi courante que de prendre l’autobus et ils n’éprouvent pas de difficultés particulières à isoler et purifier les composés des éléments jumeaux. Il est cependant évident que dans la majorité des cas on ne peut se passer des méthodes microchimiques. La chimie des éléments des terres rares illustre une fois de plus, et d’une manière très nette, comment la recherche des substances qui s’abritent parmi les décimales éloignées de la virgule a donné de nouvelles matières remarquables à la technique. Certes, même actuellement, quelques lanthanides font encore cruellement défaut. Le lutécium et le thulium, par exemple, sont respectivement 200 et 350 fois plus chers que l’or, non à cause de leur rareté mais de la difficulté à les séparer.

Depuis qu’on a appris à se contenter de quantités infimes pour l’étude des propriétés des éléments d’obtention difficile, les propriétés chimiques des métaux des terres rares nous sont devenues beaucoup plus familières.

Il y a vingt ans, la relation même la plus complète de tout ce qui était connu sur les propriétés chimiques des lanthanides aurait sans doute tenu dans une modeste brochure de moins de cent pages, de nos jours par contre elle nécessiterait une dizaine de tomes volumineux bourrés de chiffres, de formules, de schémas, etc.

Des changements de même ampleur ont eu lieu dans le domaine de l’utilisation pratique des éléments des terres dites rares.

Pendant près de 75 ans l’application des lanthanides fut limitée à la fabrication d’un alliage pour pierres à briquet. Mais nul parmi ceux qui allumaient alors leur cigarette à un briquet invariablement capricieux, pas même le chimiste, ne se doutait que chacun des métaux de cet alliage à étincelles deviendrait un jour important en métallurgie et dans l’industrie chimique.

Examinons au hasard un certain nombre de ces métaux, le thulium par exemple. Il y a une dizaine d’années, les plus volumineux manuels ne contenaient pas plus de quelques lignes sur cet élément, et encore en petits caractères, maintenant on pourrait aisément lui consacrer un livre entier, de grosseur fort respectable.

L’isotope artificiel radio-actif du thulium, à poids atomique 170, émet des rayons gamma de même nature que les rayons X. Cette dernière phrase, qui paraît empruntée à un ouvrage spécialisé, révèle en réalité une révolution dans un vaste domaine de la technique et de la médecine — celui de la radioscopie.

Chacun d’entre nous a eu l’occasion ne serait-ce qu’une fois dans sa vie de passer au cabinet de radiologie, qui est sans doute le plus mystérieux des cabinets de toute polyclinique. Le radiologue est dissimulé dans des ténèbres impénétrables. Seule une petite lampe rouge jette une faible lueur dans le fond du cabinet. L’écran émet une bizarre lumière verte. L’apparition sur cet écran du squelette de la personne qui vous précède vous remplit aussitôt d’un respect légitime pour la technique radiologique, respect qui ne ferait qu’augmenter si vous aviez l’occasion de vous familiariser avec la fabrication des appareils de radiographie. Il est vrai que les non-initiés auraient bien du mal à donner un sens à tout ce savant enchevêtrement de fils et à toutes ces ampoules de dimensions impressionnantes.

Actuellement les rayons X ont de nombreuses applications pratiques qui dépassent d’ailleurs le domaine médical. Il paraît superflu d’insister sur l’utilité des rayons X dans celui-ci ! Seule la radiologie permet de diagnostiquer un grand nombre de maladies. Les rayons X ne sont pas moins utiles en technique radiométallographique, servant à l’examen des objets métalliques. Ils permettent de déceler à coup sûr les pièces défectueuses dans lesquelles se dissimulent des fêlures ou des espaces vides invisibles de l’extérieur. Cependant, la masse considérable de l’appareillage restreint l’utilisation des rayons X. Le médecin qui va examiner un malade emporte une trousse garnie des appareils et instruments de médecine les plus divers : stéthoscopes, seringues, appareils à mesurer la tension artérielle ou à vérifier l’activité cardiaque, mais il ne lui est pas possible d’emporter un appareil de radioscopie, accessoire dont il aurait pourtant grand besoin.

Heureusement, cette difficulté sera bientôt du domaine du passé, et cela grâce à l’élément des terres rares thulium. Les appareils de radiologie à base de thulium seront ridiculement simples : une ampoule contenant une quantité quasi impondérable de thulium ou d’un de ses sels, un petit manchon pour protéger des radiations et un écran de dimensions réduites pour y projeter l’image. Je ne sais si un appareil de ce genre pourra entrer dans un sac à main mais il tiendra à coup sûr dans une serviette. Un appareil de radiologie à thulium voisinera donc très prochainement avec les stéthoscopes dans la trousse du médecin.

Est-il nécessaire d’ajouter que les appareils à base de thulium radio-actif deviendront également les auxiliaires irremplaçables des spécialistes chargés de contrôler la qualité des pièces métalliques ?

Le prométhium, cet élément qu’on n’a pas encore réussi à trouver dans la nature et que pour l’instant on obtient artificiellement, est également promis à un avenir brillant. Et ici les écrivains de récits fantastiques pourraient s’en donner à cœur joie ! Il est d’ailleurs possible que je me trompe, car il n’y a, en réalité, rien de fantastique dans ce que je me propose de dire sur le prométhium ; il n’y a que des comptes rendus d’expériences sévères et précis, des appareils déjà au point, la fantaisie peu ordinaire des savants, mais pas de fantastique.

On s’est aperçu que les émissions radio-actives du prométhium (des électrons, ou rayons bêta) pouvaient être utilisées comme source d’énergie. Une trace de prométhium absolument infime suffit à fabriquer une pile miniature capable de fournir une quantité d’énergie assez impressionnante vu ses dimensions réduites. C’est ainsi qu’une pile à prométhium guère plus grande qu’une tête d’épingle est capable d’actionner le mécanisme d’une montre-bracelet pendant cinq ans. Il existe déjà des appareils acoustiques utilisant des piles à prométhium (on sait que l’inconvénient majeur des appareils acoustiques ordinaires était la nécessité de porter sur soi des piles électriques qu’il fallait recharger fréquemment).