— L’or, tout comme les autres éléments, est omniprésent bien qu’invisible.
— Monsieur l’expert, interrompit d’un ton sarcastique l’avocat de l’un des bijoutiers, pourrait-il nous dire combien il y a d’or dans ma propre personne, par exemple ?
— Etant donné que la composition du corps de monsieur l’avocat ne diffère pas sensiblement de celle d’un rat, animal dont nous nous sommes servis pour nos expériences, l’or représente trois dix-millionièmes de votre estimable poids, répondit le professeur imperturbable. A ce propos, continua-t-il, il convient de faire observer que les divers éléments sont présents dans la même proportion dans les métaux d’origine commune. Et, inversement, les traces d’impuretés dans le fer provenant d’une certaine mine diffèrent en quantité et bien souvent aussi en qualité des traces de ces mêmes impuretés dans le fer extrait d’une autre mine.
Tout ceci nous a permis d’établir la provenance du platine soumis à l’expertise. Nous avons analysé une série d’objets en platine dont l’origine sud-américaine est certaine. Nous avons également soumis à l’analyse des articles en platine de l’Oural. En comparant les résultats de cette analyse avec ceux obtenus lors de l’étude de spécimens qui m’ont été présentés par le tribunal, j’en déduis que ce platine est sans aucun doute américain. En témoigne la présence d’une forte proportion de cuivre et d’une faible quantité d’arsenic.
La déposition de l’expert fut décisive. L’arrêt ne fut d’ailleurs pas particulièrement sévère. Les prévenus étaient des gens cossus et le jeune Reich préférait garder avec eux d’excellentes relations.
Un mois plus tard les réclames lumineuses brillaient de nouveau au fronton des larges vitrines des bijouteries qui s’ornaient de mannequins aux sourires figés, couverts de bijoux.
La classification périodique dans un… morceau de craie
Voici donc un aspect inattendu du problème des quantités infimes de matière qui, à l’époque, était à l’ordre du jour.
Il ne vaudrait guère la peine de rappeler l’existence d’une poignée de mercantis berlinois si ce n’était que cette histoire met assez bien en relief l’une des découvertes majeures de l’époque dans le domaine de la chimie, la théorie de l’omniprésence des éléments chimiques.
Quelques chiffres pour commencer. Y a-t-il une différence quelconque entre les nombres 100,0 et 100,000 ? Ne vous hâtez pas de dire non ! Réfléchissez à nouveau. Vous persistez à dire non ? Eh bien, du point de vue des mathématiques, vous avez peut-être raison. Mais moi, je suis chimiste et c’est pourquoi je déclare :
« Il y a une différence, et même considérable. »
— Quelle bêtise ! me rétorquera-t-on. Qu’importe en l’occurrence la différence entre un chimiste et un mathématicien ? Cent, c’est cent !
Voyons de plus près. Supposons que vous rouliez en voiture le long d’une route. Voyez-vous cet arbre là-bas ? A partir de celui-ci parcourez un kilomètre, en calculant la distance à l’aide de l’indicateur de vitesse. Halte ! Vous avez fait un kilomètre. Maintenant sortez de voiture et livrez-vous à quelques calculs.
Donc, vous avez parcouru un kilomètre. 1 kilomètre = 1 000 mètres. 1 000 mètres = 100 000 centimètres. Pouvez-vous dire que vous avez fait 100 000 centimètres ? Qui l’affirme se trompe bien. Pourquoi ? Etes-vous sûr que la voiture a parcouru exactement 100 000 centimètres à partir de l’arbre en question ? Ou bien 100 002 ou encore 99 998 centimètres ? C’est une différence assez grande. Vous pouvez tout au plus certifier que la voiture a roulé 1 000 mètres, et encore, vous ne savez pas trop si ce n’est pas plutôt 995 mètres ou 1 008 mètres. Comme on le voit, la quantité de chiffres dans un nombre n’est certainement pas sans importance quand il s’agit d’en révéler la teneur intime.
Si on dit qu’une voiture a parcouru 1 kilomètre, personne n’ira certifier qu’elle a roulé 1 mètre de moins ou 10 mètres de plus. Mais s’il est dit que la voiture a parcouru 1,00 kilomètre, cela signifie qu’on est sûr de ce qu’on avance, que la distance indiquée a été calculée à des centièmes de kilomètre près, autrement dit à des dizaines de mètres près.
On voit maintenant que la quantité 1,000 kilomètre signifie que la distance a été calculée à des dix-millièmes de kilomètre près, autrement dit à des décimètres près. Il apparaît donc que même les zéros peuvent être d’une signification considérable.
Il en est de même en chimie. Il n’est pas équivalent de dire qu’une substance a une pureté de 100% ou de 100,0%. Cette pureté peut s’exprimer également par un nombre qui, dans le premier cas, peut être par exemple 99,6 et, dans le second, 99,96. Comme on le voit, la différence est sensible.
Il fut un temps où les chimistes, eux non plus, n’accordaient pas grande importance à ces nuances, mais cette période « d’insouciance » est révolue depuis longtemps.
Il est une science que l’on nomme géochimie. Son domaine est l’étude de la composition chimique des divers minéraux, roches, eaux de mers et cours d’eau. L’analyse chimique d’un minéral est d’une pratique courante; on détermine la teneur du minéral en divers éléments et la chose est faite. En ajoutant les pourcentages de tous les éléments du minéral, combien doit-on obtenir ? 100%, c’est évident. Et, en effet, les chimistes ont effectué des milliers d’analyses et quand l’analyse est juste, le total se monte toujours à 100%.
Bien peu pourtant se sont préoccupés du « grade », si l’on peut dire, de ces 100%. Peut-on écrire 100,0% ou 100,000% ? En étudiant attentivement cette question, on découvre qu’écrire 100% n’est légitime que dans les cas les plus exceptionnels (mais, comme nous le savons maintenant, ceci peut correspondre à 99,91 ou 99,66, etc.). Dans la grande majorité des cas, il conviendrait d’écrire 99,9%.
Or, ce dixième de pour cent se révèle extrêmement curieux.
Il existe un minéral connu sous le nom de blende. Tous les manuels de chimie indiquent qu’il s’agit de sulfure de zinc (ZnS). En gros, c’est exact. Mais, à l’état pur, le sulfure de zinc doit contenir 67,09% de zinc alors que le minéral, ainsi que l’atteste une analyse rigoureuse, n’en contient que 63,55%. Il doit y avoir 32,91% de soufre, alors que le minéral n’en contient que 31,92%. En additionnant ces pourcentages, nous obtenons 95,47. Comme on le voit, nous sommes encore loin du compte. Le minéral contient donc encore autre chose. Certes, il n’y a là rien d’étonnant : un minéral naturel peut-il être aussi pur qu’un réactif chimique spécialement préparé en laboratoire ?
Et, en effet, une analyse complémentaire révèle dans notre spécimen des quantités assez appréciables de fer (1,57%), de silicium (0,34%), de manganèse (0,27%), d’oxygène (0,15%), de plomb (0,15%), d’arsenic (0,15%) et de cuivre (0,13%). Ce sont là les résultats d’une analyse qu’il n’y a pas tellement longtemps on pouvait qualifier de complète.
Mais l’est-elle bien, en réalité ? Additionnons tous ces résultats. Effectivement l’analyse est presque complète puisque nous obtenons 99,22%. Mais de quoi se composent les 0,78% qui restent ?
Ne continuons pas à fatiguer le lecteur avec de nouveaux chiffres. Disons seulement qu’une analyse assez poussée permettrait d’ajouter encore sept-dixièmes de pour cent. Ces 0,7% comprennent les éléments suivants : hydrogène, calcium, cadmium, aluminium, magnésium, sélénium, chlore, antimoine, carbone, phosphore, sodium, potassium, titane, bismuth.
Ainsi nous avons analysé la blende, qui doit se composer de zinc et de soufre, et nous avons déjà trouvé 23 éléments. Mais ce n’est pas tout. Il reste encore près de 0,1% et ce 0,1% se compose de 23 autres éléments. Inutile de les énumérer ; précisons seulement que parmi eux il y a du germanium, de l’indium, de l’or (dont la blende contient environ 0,0005%).