Аксоны играют важнейшую роль в осуществлении мозгом его многочисленных функций. Но они занимают уйму места. На самом деле, когда эволюция стала добавлять в мозг нейроны, новые связи, по сути, заняли больше места, чем сами новые нейроны[11]. Длинные провода занимают больший объем, чем короткие, и для их поддержания требуется больше усилий. Несколько десятилетий назад инженеры из Лаборатории Белла столкнулись с этой же проблемой: добавление к устройству новых элементов требует добавления многочисленных громоздких и дорогих проводов. То, что инженеры называли тиранией чисел, мы можем назвать тиранией нейронов. И если вам это не кажется серьезной проблемой, думайте дальше.
Нейроны бывают самых разных видов и имеют разные свойства, но каждый конкретный нейрон для выполнения своей функции должен быть напрямую связан с сотнями других нейронов мозга. Без разумного решения этой инженерной задачи дорогостоящие провода займут в мозге место и отнимут энергию, так что существо будет с трудом удерживать непомерно большую голову и удовлетворять потребности в калориях, и, следовательно, будет голодать. В человеческом мозге около 86 миллиардов нейронов. Если бы каждый из них соединялся со всеми остальными случайным образом, такой орган имел бы протяженность более 20 километров[12], хотя каждый аксон тоньше человеческого волоса. К счастью, каждый отдельный нейрон не должен быть связан со всеми остальными; он работает во взаимодействии лишь с небольшим количеством из этих 86 миллиардов нейронов мозга.
Но даже при этом любой мозг со случайным соединением нейронов был бы непомерно велик.
Электронные устройства показывают, как это работает. Конструкторы размещают как можно ближе друг к другу те элементы устройства, которые должны работать сообща и обмениваться информацией. Это позволяет экономить пространство за счет сокращения длины (и, следовательно, объема) проводов, соединяющих эти элементы. Такой же принцип реализуется в мозге. Если два нейрона совместно выполняют какую-то работу, они должны быть связаны между собой. И поэтому, если такие нейроны располагаются в мозге рядом друг с другом, это экономит энергию и позволяет использовать короткие провода.
Каждый нейрон в мозге должен переговариваться с другими нейронами. Но с какими? Вспомните о фрагментарной природе наших тактильных ощущений, которые начинаются как мозаика тактильных сигналов, воспринимаемых отдельными чувствительными рецепторами в коже. Я сравнила тактильный рецептор, спрятанный в коже вашего правого колена, с необщительным землевладельцем, интересующимся исключительно своим небольшим участком на поверхности земли (колена). Эта территория составляет его рецептивное поле. Если что-то касается кожи на этом участке, рецептор подает сигнал тревоги, создавая быстрый залп импульсов возбуждения. “На моей территории что-то происходит!” Эти сигналы отправляются в мозг к нейронам, у которых тоже есть рецептивные поля. В мозге есть нейроны, активность которых отражает давление на правое колено, хотя никакого реального колена в мозге нет. И с кем нейрон правого колена должен общаться в первую очередь? С другими нейронами, отражающими прикосновение к правому колену. А с кем еще? С нейронами, которые отражают прикосновение к верхней части правой голени или нижней части правого бедра. В целом нейроны в первую очередь должны сообщаться с теми клетками, которые отображают состояние тех же самых или соседних участков тела.
Есть причина, почему нейроны должны в большей степени общаться со своими партнерами-единомышленниками, и у этой причины есть название: локальная обработка. Локальная обработка, по сути, заключается в сравнении ситуации в одной точке пространства с ситуацией в другой точке. Это могут быть точки в пространстве нашего тела в случае прикосновения или в нашем поле зрения в случае зрения. Важно, что локальная обработка связана с поисками ответа на следующие вопросы: происходит ли здесь что-то, что не происходит там? там, но не тут? где-то еще? или нигде? Такие специфические сравнения кажутся банальными, но они чрезвычайно важны. Они дают информацию о том, где именно что-то происходит, например, болезненное ощущение в области колена. Эти сравнения также обеспечивают важный контекст для обработки других сенсорных сигналов. В частности, поступление информации о боли в одном участке колена может помочь другим нейронам, отображающим состояние других участков кожи, также обнаружить боль. Этот тип коммуникации играет наиболее важную роль для нейронов, имеющих соседние рецептивные поля. На уровне нейронов, как и в нашей каждодневной жизни, те события, которые происходят по соседству, с большей вероятностью связаны с нашей текущей ситуацией. Если горит соседний дом, хорошо бы нам об этом знать. А если горит дом в другой точке планеты? Это не так важно. Часто сравнение нашей ситуации с ситуацией у соседей также доставляет важную информацию о том, какова наша собственная ситуация. Например, представьте себе, что в вашем доме или квартире отключилось электричество. Если это случилось только у вас, вам нужно вызвать электрика для наладки или проверить, оплатили ли вы последние счета. Но если у соседей тоже нет электричества, возможно, источник проблемы находится на расстоянии нескольких километров, и вам ничего другого не остается, как ждать городскую службу или представителей энергетической компании. И такая же ситуация с нейроном, отображающим прикосновение к правому колену. На колено действует давление, если на вас слишком узкие брюки или вы заснули на животе. Но в обоих случаях давление оказывается на многие части тела. Нет необходимости осознавать ощущение именно в колене. Однако сравните это ощущение с прикосновением к вашему колену чьей-то руки или с ударом о него мяча. Это давление действует только на колено и означает, что происходит нечто особенное, связанное только с коленом. Бросьте все и обратите внимание на колено! Если маленький коленный нейрон собирается помочь нам распознать разницу между этими событиями, он должен сообщаться с нейронами, отображающими давление на кожу выше коленной чашечки, под ней и с обеих сторон от нее.
11
Zhang K., Sejnowski T.
12
Nelson M., Bower J.