В окрестностях точки Лагранжа L4 находится Ахиллес, образующий с Солнцем и Юпитером равносторонний треугольник (его углы равны 60°). В окрестностях других точек Лагранжа (L1 и L2) находятся другие троянские астероиды, расположенные на прямой линии,что соответствует решению Эйлера.
Вначале давайте рассмотрим аномалии движения Юпитера и Сатурна. Галлей в XVII веке констатировал, что Сатурн двигается с явным замедлением и удаляясь от Солнца, а Юпитер — ускоряя свой бег и приближаясь к светилу. Если бы эта тенденция сохранилась, Юпитер в конце концов столкнулся бы с Солнцем, а Сатурн — покинул пределы Солнечной системы.
Подставляя (в уравнение) цифровые показатели для Юпитера и Сатурна, я был удивлен тем, что оно становилось равно нулю.
Лаплас об уравнении, доказывающем постоянство усредненных орбит планет
Между 1785 и 1786 годами Лаплас решил эту загадку, описав ее в своих гениальных трудах под названием «О вековых неравенствах планет и спутников» и «Теория Юпитера и Сатурна». Как и Лагранж, Лаплас понимал, что найти точные аналитические решения задачи трех тел невозможно, поэтому следует прибегнуть к приблизительным решениям. И он сумел предоставить аналитическое выражение для векового неравенства планет. Ему удалось вывести уравнение и обнаружить приятный сюрприз: вековые ускорения планет пропали. Ученый смог разобраться с одним из самых важных феноменов мировой системы и доказать, что неравенства, наблюдаемые в движении Юпитера и Сатурна, являются не вековыми, а периодическими.
Аномалии движения Юпитера и Сатурна объясняются ньютоновым законом всемирного тяготения, и, в принципе, можно рассчитать предшествующие и последующие состояния системы. Ускорение первой планеты и замедление второй — следствие их взаимного влияния. Эти возмущения периодические и поэтому — компенсируемые. Каждые 450 лет они меняют знак ускорения: Юпитер начинает замедлять движение, а Сатурн, наоборот, ускоряется. Таким образом, планеты возвращаются в исходное положение каждые 900 лет. По какой причине это происходит? Лаплас констатировал, что на каждые пять оборотов Юпитера по его орбите приходится около двух оборотов Сатурна и для того, чтобы обе планеты вновь оказались в исходном положении, требуется 900 лет[1 Период обращения Юпитера — 12 лет, период обращения Сатурна — почти 30. За 900 лет Юпитер сделает 75 оборотов, а Сатурн — 30.]. В результате накопленные возмущения компенсируются. Наконец-то нашелся человек, который сумел объяснить ускорение Юпитера и торможение Сатурна, так тревожившие астрономов со времен Ньютона! И эта тревога понятна, ведь ни один ученый не может наблюдать регулярность в течение такого долгого промежутка времени!
Каким же образом Лаплас получил столь блестящий результат? Чтобы решить проблему движения планет, он использовал приблизительные значения. Если бы существовала только одна планета, она описала бы вокруг Солнца обычную эллиптическую орбиту. Но поскольку планеты воздействуют друг на друга, в качестве обычной можно рассматривать возмущенную орбиту. Для этого мы добавим к расчетной орбите небольшое возмущение (см. рисунок).
Анализ уравнений орбитального движения очень сложен для того, чтобы приводить его здесь. Если дифференциальные уравнения, описывающие движение системы из двух тел, линейны, то уравнения для системы из трех и более тел нелинейны. Для поиска решений необходимо воспользоваться методом приближений. Решение нелинейного дифференциального уравнения, соответствующего проблеме с учетом возмущений, может быть найдено путем решения аналогичного линейного уравнения — в котором не учитывается влияние третьего тела — и затем введения в полученный результат возмущения. Иными словами, мы находим приблизительное решение проблемы трех тел, используя наши знания о проблеме двух тел. Таким образом, решение нелинейного уравнения с возмущениями строится на соответствующей корректировке решения обычного уравнения (линейного).
Главное при этом — с необходимой точностью определить степень возмущения (которое в нашем случае является периодическим). Лаплас длительное время вычислял возмущения, которые испытывают планеты, при этом в уравнениях он сохранял основные элементы (первые члены) и отклонял другие, слишком ничтожные. Решения, к которым он таким образом пришел, были не точными, а приблизительными. Однако даже эта неточность позволяла делать достоверные прогнозы, учитывая следующее: