Выбрать главу

Труд Якоба Бернулли Ars conjectandi {«Искусство догадок») ознаменовал второй этап в истории теории вероятностей. В этом неоконченном трактате, опубликованном в 1713 году, уже после смерти автора, математик обратился к комбинаторным рассуждениям для вычисления вероятности какого-либо события. Он впервые представил проблему обращенной вероятности и пояснил, что теоретические количества случаев часто неизвестны, при этом то, что не дано вывести априорно (посредством исключительно логических рассуждений), можно получить апостериорно, то есть на основании многократного наблюдения. Якоб Бернулли стал автором одноименной формулы: относительная частота события стремится к заданному числу (вероятность события) при увеличении количества повторов.

Формула Якоба Бернулли позволяла эмпирическим путем рассчитать неизвестные вероятности и определить объективную вероятность события. И действительно, если частота события с увеличением количества наблюдений стремится к вероятностным значениям, почему не определить вероятность, исходя из частоты? Благодаря индукции можно определить вероятность как предел частоты, а не просто вычислить ее логическим или субъективным способом (как степень ожидания).

Французский математик Абрахам де Муавр (1667- 1754) — ревностный кальвинист, который был вынужден эмигрировать в Великобританию, чтобы избежать религиозных преследований, — в 1718 году опубликовал свой трактат «Доктрина азарта». В нем де Муавр подчеркивал, что статистическая закономерность, подтверждаемая формулой Бернулли, невозможна без помощи Бога. Вероятно, из его работ, как мы увидим это позже, Лаплас унаследовал отношение к божественному провидению, которому он нашел место даже в основах теории вероятностей.

ФОРМУЛА БЕРНУЛЛИ

Возьмем событие А, вероятность наступления которого равна р. Мы повторяем эксперимент п раз, чтобы определить частоту наступления А. Если событие А имеет место т раз, то, вычислив т/п, мы определим частоту его наступления, то есть количество раз, когда событие произошло по отношению к общему количеству попыток. В абсолютном выражении разница между вероятностью р и относительной частотой т/п определяет ошибку, которую мы могли бы совершить, если бы использовали относительную частоту в качестве приближенного значения вероятности. Бернулли доказал, что если мы повторим опыт достаточное количество раз, эта разница будет меняться: она стремится к нулю, когда п стремится к бесконечности. В математических терминах это выражается так, как показано ниже: если е — это положительное значение, сколь угодно малое, тогда:

Эта формула иллюстрирует закон случая, или закон стабильности частоты: используя терминологию той эпохи, существует уверенность в том, что в долгосрочной перспективе относительная частота события не будет слишком сильно отклоняться от его вероятности. Это самая простая формулировка закона больших чисел, предложенного в XIX веке последователем Лапласа Симеоном Луи Пуассоном.

СЕМЬЯ БЕРНУЛЛИ

Якоб Бернулли (1654-1705) по желанию своего отца изучал теологию, но очень скоро он оставил этот путь, чтобы стать преподавателем математики в Базельском университете. Эту должность ученый будет занимать до самой смерти. Его младший брат Иоганн (1667-1748), также очарованный математикой, пошел по стопам Якоба и сменил его на академическом посту. Отношения между братьями были напряженными в течение всей жизни. Оба педанты, они часто спорили о первенстве в решении математических задач. Жесткая полемика возникла по поводу того, кто первым нашел решение задачи о брахистохроне (кривой скорейшего спуска), которая была настоящим вызовом для европейских математиков: Якоб, Иоганн, Лейбниц или Ньютон (последний нашел ответ после изнурительного рабочего дня в монетном дворе Лондона и опубликовал его анонимно, однако инкогнито сохранить не удалось, поскольку «льва узнают по когтям», как сказал один братьев). Иоганн имел довольно тяжелый характер и даже выгнал из дома собственного сына Даниила (1700-1782).

Якоб Бернулли.

Якоб Бернулли посвятил последнюю часть своего важного трактата применению теории вероятностей в социальных, моральных и экономических делах:

«Искусство предполагать предстает перед нами как искусство рассчитать так точно, как это возможно, вероятности происходящих вещей. Цель наших суждений и наших действий — в том, чтобы мы всегда смогли следовать жребию, который выбрали в качестве лучшего. (...) Именно в этом состоит мудрость философа и проницательность политика».