Решение нашли Паскаль и Ферма — каждый своим способом. «Я вижу, — писал первый второму, — что истина одна и та же в Тулузе и Париже».
Предположим, что А и В в одинаковой степени ловки в игре (в каждой партии вероятность, что один выиграет у другого, равна 1/2); вероятность, что А выиграет третью партию у В, — 3/4, так как есть два возможных исхода: либо он выиграет с первой попытки (с вероятностью 1/2, финальный счет тогда 3:1), либо со второй (вероятность 1/2 х 1/2 = 1/4, финальный счет 3:2). Сумма вероятностей этих двух исходов — 3/4. Напротив, вероятность того, что В выиграет, — лишь 1/4, поскольку ему для этого необходимо выиграть два раза подряд (1/2 х 1/2 = 1/4). Таким образом, следует разделить монеты следующим образом: 3/4 для А (48 монет) и 1/4 — для В (16 монет). Впоследствии Лаплас обобщает эту задачу исходя из гипотезы, что два игрока играют по-разному.
Схема различных возможностей завершить игру.
Первая публикация этого позднего труда — Лапласу было уже 62 года — состоялась в 1782 году. Работа была посвящена Наполеону. Автор подчеркивал, что расчет вероятностей применялся «к самым важным жизненным вопросам, которые по большей части являются лишь задачами вероятности». Наполеон в ответ назвал теорию вероятностей «первой из наук». Лаплас в течение десятилетий полностью посвятил себя небесной механике, но потом он вновь взялся за свои прежние труды о вероятностях и отправил в издательство научный трактат на эту тему.
РИС.1
РИС. 2
Как гласило название, Лаплас стремился предложить аналитическую теорию вероятностей, то есть установить связь между анализом и расчетом вероятностей — двумя дисциплинами, тогда еще полностью разделенными.
Важен тот факт, что в своей книге Лаплас исследовал центральную предельную теорему, имеющую решающее значение для статистики и теории вероятностей. В своем труде от 1773 года он изучал увлекательный вопрос, связанный с определением реального положения звезды на основании серии наблюдений. Здесь недостаточно применить арифметический метод, ведь необходимо доказать, что выбранное значение минимизирует погрешность, то есть разницу между реальным и наблюдаемым явлениями. Лаплас интерпретировал эту проблему, рассматривая фактическое положение звезды в качестве причины наблюдаемых положений, и предположил, что погрешности зависят от случая. Искусно используя теорему Байеса, ученый пришел к выводу, что возможно начертить кривую, которая представляла бы распределение погрешностей вокруг истинного значения. Кривая является симметричной и нисходящей, исходит из центрального значения; чем больше мы удаляемся от этой точки, тем больше вероятность, что мы допускаем погрешность измерения. Чем ближе мы к вершине кривой, тем больше вероятность того, что мы ближе к фактическому значению. Решая дифференциальное уравнение, Лаплас сделал вывод, что кривая распределения погрешностей (рисунок 1, страница 136) выражается экспоненциальной функцией:
φ(x) = (e-|x|)/2.
Лаплас не первый определил нормальное распределение, равно как и экспоненциальную функцию (хотя и выраженную с помощью другой формулы). Она была введена Муавром в начале XVIII века. Обычная кривая распределения погрешностей связана с методом наименьших квадратов (рисунок 2, страница 136), цель которого — представление полученных данных в виде кривой, а также минимизация погрешностей метода. Лежандр представил этот метод в 1805 году в труде «Новые методы для определения орбит комет». Кроме этого молодой математик по имени Карл Фридрих Гаусс утверждал, будто он первым использовал этот метод в 1801 году, что спровоцировало ожесточенный спор между двумя математиками, каждый из которых отстаивал свое право на авторство открытия.
Гаусс первым рассчитал орбиту планеты Церера, открытой в начале XIX века, 1 января 1801 года. Немецкий ученый проанализировал серию наблюдений Цереры, предположил, как проходит ее орбита, и предсказал, где эта малая планета появится снова. Ученый использовал собственный метод — метод наименьших квадратов, который тщательно описал в своем дневнике. Он позволяет построить траекторию на основании совокупности точек и минимизировать при этом сумму квадратов погрешностей, то есть различие между наблюдаемыми и реальными значениями.
В 1809 году Гаусс триумфально вошел в мир астрономии со своим трудом «Теория движения небесных тел». В нем он устанавливал связь между методом наименьших квадратов и теорией погрешностей, доказывая, что распределение погрешностей может быть проанализировано с помощью этого метода. В действительности однажды, определяя кривую, которая позволяла минимизировать среднюю квадратичную погрешность, Гаусс заметил, что погрешности приближенного значения распределяются случайным образом вокруг среднего значения. Это симметричное распределение в виде купола было не чем иным, как кривой Гаусса (рисунок 3, ниже). Она может быть выражена в виде функции: