Выбрать главу

Именно в этом направлении Лаплас и достиг некоторых успехов, предложив математические способы, которые с течением времени были улучшены. Ученый максимально использовал математические методы, которые изучил или придумал, в частности имевшие отношение к интегрированию, то есть к решению — точному или приближенному — дифференциальных уравнений, встреченных им в механике и астрономии. Начиная с публикации своей первой статьи Лаплас заинтересовался этими способами интегрирования, которые считал важным открытием.

БЕГ С ПРЕПЯТСТВИЯМИ: АКАДЕМИЯ И МОЛОДОЙ ВУНДЕРКИНД

Королевская Академия наук Парижа, созданная в 1666 году Людовиком XIV и располагавшаяся в здании Лувра, была центром притяжения великих ученых того времени. Кандидаты, желавшие получить пожизненное место в Академии, должны были сначала завоевать признание ее действительных членов, прислав одному из них свою работу, которую тот представлял своим коллегам на специальном собрании, тогда как два других члена составляли отчет с оценкой работы. Лаплас прекрасно понимал, что обязательно должен пройти эту процедуру, если он хочет обеспечить себе будущее в качестве ученого и материальную стабильность. В то время академии предлагали математикам финансовую помощь и публиковали их труды в специализированных журналах.

Лаплас отправил свои первые записки в академию 28 марта 1770 года. Его рецензенты, среди которых был Кондорсе, написали:

«Нам кажется, что статья господина Лапласа раскрывает лучшие знания математики и большие способности к вычислениям, нежели мы обычно находим в людях его возраста».

Тем не менее в 1772 году, несмотря на публикации и похвальные отзывы, Лаплас так и не смог стать членом Академии наук. Отчаявшись, юноша уже подумывал о том, чтобы эмигрировать в Пруссию или Россию, как Лагранж и Эйлер.

Но в марте 1773 года удача ему улыбнулась. После многочисленных попыток Лаплас наконец получил место в отделе механики. Он был назначен 30 марта адъюнкт-геометром, а 31 марта — адъюнкт-механиком (за этот пост молодой человек конкурировал с Гаспаром Монжем (1746-1818) и Адриеном- Мари Лежандром (1752-1833)). После трех лет настойчивых попыток в возрасте 24 лет Лаплас наконец стал полноправным членом Академии.

Радость нашего героя, как и радость его покровителя д’Аламбера, была необыкновенной. Амбициозная мечта, которую он лелеял с момента своего прибытия в Париж, наконец осуществилась.

ГЛАВА 2

Устойчивость системы планет

В течение всего XVIII века математики и астрономы безуспешно пытались решить определенные проблемы, на которые механика Ньютона не давала ответа: форма Земли, ее орбита, кометы, аномалии движения и в целом устойчивость Солнечной системы. Лаплас играл в этих исследованиях решающую роль: ему удалось доказать, что принцип гравитации — краеугольный камень всего ньютоновского сооружения.

Став членом Академии, Лаплас понемногу поднимался по служебной лестнице. Коллеги признавали его математический талант, даже несмотря на некоторое неуважение, которое Лаплас демонстрировал по отношению к ним, заимствуя результаты без ссылок на авторство. Такое поведение сохранится в течение всей карьеры ученого. Тяжелый нрав Лапласа, его бескомпромиссность в спорах стали общеизвестными, а своим высокомерием он даже шокировал других академиков, также не чуждых снобизма.

В 1770-х годах важный вклад Лапласа в науку начал принимать четкие очертания: он доказал устойчивость известной Вселенной, то есть Солнечной системы. Его учитель д’Аламбер одной из научных целей эпохи считал необходимость дополнить теорию Ньютона. Речь шла не просто о соответствии теории и наблюдений; необходимо было описать мир, опираясь на некоторые рациональные подходы и принцип всемирного тяготения Ньютона. Это был также и философский вопрос: задача должна была быть решена не только физиками и математиками, но и философами. Однако, чтобы объяснить великий вклад Лапласа, вначале необходимо коротко описать состояние знаний о планетной системе, характерное для последней четверти XVIII века.