Хотя «сверхновая» вроде бы означает, что звезда «новая», на самом деле она уже давно существует на небе, просто в один прекрасный момент звезда внезапно вспыхивает и становится более заметной для наблюдателей. Звезда разрушается в процессе катаклизма, о чем говорит ее необыкновенно мощное сияние. Существует много разных видов сверхновых, но главные «поставщики» космических лучей — звезды типов II и lb, масса которых намного превышает массу Солнца. В глубине Солнца ядерная печка переплавляет водород в гелий и тем самым вырабатывает энергию, поддерживающую жизнь на Земле. Когда большая часть водорода в ядре Солнца будет сожжена, начнет гореть гелий, синтезируя углерод и кислород. Так ведет себя любая звезда размером с Солнце. Сбросив свою оболочку в виде красивейшей планетарной туманности, само ядро превратится в белого карлика — маленькую, мертвую, медленно затухающую звезду.
В более массивных звездах ядерное горение — в виде реакции синтеза — идет дальше. Сильная гравитация приводит к сжатию ядра, его температура возрастает так, что начинают «гореть» углерод и кислород, производя на свет — или, правильнее сказать, «в свете ядерного пламени» — более тяжелые элементы. В конечном итоге слияние ядер кремния порождает железо, и на этом энергия ядерной печки достигает своего предела. Тепло больше не выделяется, у звезды не остается сил, чтобы сопротивляться давлению гравитации, железное ядро коллапсирует, и все остальное звездное вещество рушится на него.
Поскольку внезапно высвобождается огромное количество энергии, верхние слои звезды отбрасываются наружу. Армии призрачных частиц, называемые нейтрино, взрывным манером выталкивают большую часть звездного вещества в окружающее пространство. А тем временем реакция синтеза, подстегнутая высвобожденной энергией, создает химические элементы тяжелее железа — по всей линейке, вплоть до золота, урана и даже далее.
Несколько недель сверхновая светит с силой миллиардов солнц. В этом случае мертвое ядро становится не белым карликом, а более плотным объектом, нейтронной звездой. Небо усеяно нейтронными звездами, и каждая означает смерть своей крупной предшественницы. Когда эти звезды молоды, они часто заявляют о своем существовании, посылая пульсирующие радиосигналы, поэтому они называются пульсары. Крабовидная туманность, самый известный остаток сверхновой, все еще хранит свой пульсар среди звездных обломков. Во многих других случаях пульсар получает легкий толчок в бок и ускользает, оставив развалины звезды позади, — как поджигатель, покидающий место преступления.
Распыленное до отдельных атомов вещество взрывной волной свободно расходится в космосе со скоростью в тридцать раз меньшей, чем скорость света, то есть 10 тысяч километров в секунду. В результате оно обладает колоссальной кинетической энергией, и приблизительно одна пятая этого вещества в конце концов будет преобразована в космические лучи, путешествующие со скоростями, близкими к скорости света. Но этот процесс требует времени.
По-настоящему образование космических лучей начинается только тогда, когда распыленное до атомов вещество становится таким же разреженным, как межзвездный газ, и встречает сопротивление с его стороны. Тогда вещество взорвавшейся звезды притормаживает и смешивается с атомами межзвездного вещества. Ударные волны становятся более интенсивными, а магнитные поля, связанные с ними, — более сильными.
Вот так в пределах разлетевшихся обломков сверхновой звезды и формируются «фабрики космических лучей». Немецкий и швейцарский астрономы, Вальтер Бааде и Фриц Цвикки, еще в 1934 году впервые выдвинули предположение, что источником космических лучей могут быть сверхновые звезды. Спустя 15 лет физик итальянского происхождения Энрико Ферми из Чикагского университета предположил, что заряженные частицы в космосе могут набирать энергию, если они отскакивают от движущегося магнитного поля. Представьте себе, как медленно летит резиновый мячик, когда его небрежно бросит ребенок, и как он отлетает на огромной скорости, стукнувшись о лобовое стекло проезжающей мимо машины.
Другие теоретики вскоре поняли, что ударная волна в остатках сверхновой создает особенно мощный ускоритель, так как неравномерные магнитные поля впереди и сзади ударной волны действуют как зеркало. Заряженные частицы, будущие космические лучи, отражаются то вперед, то назад и, каждый раз проходя сквозь ударную волну, постоянно накапливают энергию. Магнитные «зеркала» не дают частицам выйти, в то время как их ускорение продолжается. Когда они окончательно выберутся из остатков сверхновой, их скорость будет соответствовать той, какую могут придать частицам ускорители на Земле. Есть и такие, что двигаются в сотни раз быстрее, чем частицы, ускоренные в самых современных машинах, но таких относительно немного.