Выбрать главу

«ГОА сегодня» выпустило более обоснованный комментарий, озаглавив его: «СО2 как главный фактор фанерозойского климата». Авторами выступили пять ученых под руководством Даны Ройера из университета штата Пенсильвания. Они утверждали, что график температур, основанный на содержании тяжелого кислорода в древних отложениях карбоната, должен быть уточнен с поправкой на кислотность морской воды в те времена. Тогда, как предполагали авторы статьи, связь между температурами и двуокисью углерода станет намного очевиднее:

«Колебания потока космических лучей могут воздействовать на климат, но не они играли ведущую роль в течение многих миллионов лет»[69].

Решайте сами, кто прав. Уровень двуокиси углерода опускается и поднимается только дважды за 550 миллионов лет, в то время как на графиках космических лучей вы можете увидеть по четыре всплеска и падения. И так как было четыре основных холодных и четыре теплых периода, модель безоговорочно поддерживает Шавива и Вейзера, когда они утверждают, что космические лучи — главная движущая сила климата. Но ледниковые периоды были не одинаковы по своей мощности, и, следовательно, помимо космических лучей действовали и иные силы.

Попытку прекратить разногласия о том, что важнее — космические лучи или углекислый газ, — предпринял Клаус Вальман из Института морских исследований ГЕОМАР в Киле (Германия). Он написал в журнал «Геохимия Геофизика Геосистемы» статью, где заявил, что не мог бы воспроизвести диаграммы температур с поправкой на кислотность без добавления охлаждающего эффекта космических лучей. С другой стороны, по его словам, двуокись углерода играет значительную роль в усилении или ослаблении изменений климата:

«Теплые периоды (кембрий, девон, триас, меловой) характеризуются низким уровнем космических лучей. Холодные периоды, от позднего каменноугольного до раннего пермского и поздний кайнозойский [следовательно, настоящее время], отмечены высоким притоком космических лучей и низким значением двуокиси углерода. […] Два умеренно холодных периода, совпадающие с ордовикско-силурийской и юрско-раннемеловой эпохами, характеризуются и высоким содержанием двуокиси углерода, и большим количеством заряженных частиц, так что парниковое потепление компенсировалось охлаждающим воздействием низких облаков»[70].

Как сильно влиял углекислый газ на климат далекого прошлого? Когда мы видим провалы в графиках, 300 миллионов лет назад и в сегодняшней ледниковой эре, количество двуокиси углерода в воздухе составляет всего лишь несколько сотен частиц на миллион, но на подъемах оно вырастает до 5000 и 2000 частиц на миллион. Если захотите перевести это на язык, используемый для современного описания изменений климата, вам придется спросить, насколько поднимутся температуры, если содержание двуокиси углерода возрастет с 280 до 560 частиц на миллион — то есть увеличится в два раза по сравнению с уровнем, существовавшим до промышленной революции? Межправительственная группа экспертов по изменению климата полагала, что цифры будут в пределах от 1,5 до 4,5 градуса Цельсия.

Первоначально Шавив и Вейзер, основываясь на данных за 500 миллионов лет, предполагали, что чувствительность климата к двуокиси углерода могла составить 0,5 градуса Цельсия. Однако они согласились с тем, что следует откорректировать цифры с учетом кислотности морской воды, хотя и полагали, что Дана Ройер с коллегами переоценивают ее влияние. Шавив и Вейзер также подчеркивали, что подсчет атомов тяжелого кислорода, используемый для определения температуры, должен быть скорректирован с поправкой на количество льда в мире, потому что если образуются ледовые щиты, то в морской воде остается больше тяжелого кислорода. Шавив и Вейзер пересмотрели свою оценку чувствительности климата к двуокиси углерода, и в этот раз она составила 1,1 градуса Цельсия.

Их оценка совпала с мнением знаменитого метеоролога Ричарда Линдзена из Массачусетского технологического института о сегодняшнем состоянии атмосферы. Линдзен неоднократно высказывался об умеренном влиянии на климат двуокиси углерода. Как он объяснил в выступлении перед английской Палатой лордов в 2005 году:

вернуться

69

D. Royer et al. GSA Today. March 2004, pp. 4–10.

вернуться

70

K. Wallmann. Geochemistry Geophysics Geosystems. Vol. 5, 2004.