Позже Лейбниц оставил эту идею, поскольку нашел ее слишком сложной, и приспособил другую схему, основанную на латыни. В его новом подходе нужно было свести все понятия к более простым элементам, обозначить их символами и создать другие символы для сочетаний предыдущих элементов. Для этого он предлагал создать энциклопедию, которая включала бы в себя все существующее знание. Ученый даже написал введение для энциклопедии и проводил исследования, пытаясь приспособить вычисление и геометрию к нахождению универсальной характеристики. В итоге проект не получил конкретного развития.
Хотя в истории существовали отдельные попытки сделать двоичную систему счисления, именно Лейбниц создал такую систему в том виде, в каком мы ее знаем сегодня. Мы не можем сказать точно, когда именно ученый занимался этой идеей, но уже в 1682 году он написал о возможностях двоичной системы и начал разрабатывать конструкцию основанной на ней арифметической машины, хотя в дальнейшем ему пришлось отказаться от данного проекта из-за большого количества технических сложностей.
В распоряжении нашей десятичной системы есть 10 цифр: 0, 1,2, 3, 4, 5, 6, 7, 8 и 9. Если имеется более 9 элементов, поскольку у нас нет других знаков, мы переходим к старшему разряду (десяткам), и так элемент, следующий за 9, обозначается 10, го есть один десяток и ноль единиц. Точно так же, если добавить единицу к группе из 99 элементов, получается сотня, которая обозначается 100, и так далее.
В двоичной системе есть только две цифры: 0 и 1. Поэтому когда мы хотим представить элементы больше 0 или 1, мы должны также использовать разряды высшего ранга. Например, чтобы зафиксировать значение 2, мы будем использовать запись 10: одна единица второго разряда и ноль единиц первого разряда. Двоичное число состоит из ряда нулей и единиц. Первые двоичные числа представлены в следующей таблице.
Десятичное | Двоичное |
0 | 0 |
1 | 1 |
2 | 10 |
3 | 11 |
Десятичное | Двоичное |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |
Десятичное | Двоичное |
8 | 1000 |
9 | 1001 |
10 | 1010 |
11 | 1011 |
Десятичное | Двоичное |
12 | 1100 |
13 | 1101 |
14 | 1110 |
15 | 1111 |
Чтобы перевести десятичное число в двоичную форму, мы должны делить его и образующиеся результаты деления на 2: остатки от деления — это нули и единицы, которые нужно расположить от последнего к первому. Посмотрим, как превратить число 54 в двоичное, то есть 54 = 110 110 (2.
Кроме двоичной системы счисления существуют другие подобные. Одна из них — восьмеричная: в ней только восемь цифр, от 0 до 7, и следующее значение вместо 8 — это 10. Но, возможно, наиболее используемой является 16-ричная система — на основе 16. Для нее требуется 16 различных цифр, а у нас есть только 10, поэтому недостающие цифры заменяются буквами. В результате в 16-ричной системе имеются цифры 0,1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.
Двоичная | 8-ричная | 16-ричная |
0000 | 00 | 0 |
0001 | 01 | 1 |
0010 | 02 | 2 |
0011 | 03 | 3 |
0100 | 04 | 4 |
0101 | 05 | 5 |
0110 | 06 | 6 |
0111 | 07 | 7 |