Выбрать главу

УГО сдвоенного 4-канального мультиплексора со стробированием К555КП12 приведено на рисунке 34,а.

Рисунок 34 Сдвоенный 4-канальный мультиплексор К555КП12 а) и 8-канальный мультиплексор на его основе б).

Входы стробирования используются для построения мультиплексоров (коммутаторов) с k2n-информационными входами, k=2, 3, 4…

Схема мультиплексора 8:1 на основе сдвоенного 4-канального мультиплексора со стробированием приведена на рисунке 34,б.

Если подавать на информационные входы Xi постоянные уровни, соответствующие лог. «0» или лог. «1», то на выходе мультиплексора можно получить любую желаемую функцию переменных управляющего кода. При этом число переменных в реализуемой выходной функции будет равно разрядности управляющего кода.

В общем случае на информационные входы можно подавать не постоянные логические уровни, тогда на выходе мультиплексора реализуется логическая функция с большим числом переменных.

4.3.2 Дешифраторы-демультиплексоры 

Демультиплексор — это функциональный узел, осуществляющий управляемую коммутацию информацию, поступающую по одному входу, на N выходов. Таким образом, демультиплексор реализует операцию, противоположную той, которую выполняет мультиплексор. 

Обобщённая схема демультиплексора приведена на рисунке 35. В общем случае число выходных линий N определяется количеством адресных входов n и равно N=2n.

Для случая n=2 функционирование демультиплексора осуществляется в соответствии с таблицей истинности, приведённой на рисунке 36,а.

Рисунок 35 Обобщённая схема демультиплексора

Рисунок 36 Таблица истинности — а) и функциональная схема 4-канального демультиплексора — б)

Из таблицы истинности записываем характеристические уравнения демультиплексора:

Соответствующая этим уравнениям функциональная схема демультиплексора приведена на рисунке 36,б. Она имеет в своём составе два инвертора и четыре элемента «И».

Сравнивая таблицы истинности и функциональные схемы демультиплексора и дешифратора, легко увидеть схожесть их функций. Если функция X=1 постоянно, то демультиплексор выполняет функции дешифратора. Учитывая схожесть выполняемых функций, микросхемы дешифраторов и демультиплексоров имеют одинаковое условное обозначение — ИЕ, называются «Дешифратор-демультиплексор» и могут выполнять функции и дешифратора и демультиплексора.

В качестве примера рассмотрим микросхему К155ИД4, УГО которой приведено на рисунке 37,а. Это сдвоенный 4-канальный дешифратор-демультиплексор. Каждая секция имеет один информационный вход (D и Ē), один вход разрешения , четыре выхода  и два общих адресных входа (a1, a0). Возможные способы включения и режимы работы показаны на рисунке 36,б.

Рисунок 37 Микросхема К155ИД4 а) и возможные режимы её работы б).

Наличие у МС прямого и инверсного информационных входов позволяет простым их объединением получить третий адресный разряд а2, а двух инверсных  входов разрешения — общий вход разрешения дешифратора 3:8 или информационный вход демультиплексора 1:8.

Рассмотренную выше микросхему дешифратора К155ИД3 можно использовать в качестве демультиплексора с форматом 1:16. При этом входы разрешения дешифрации используются в качестве основного информационного входа X, а адресные входы и выходы используются по прямому назначению.

4.4 Устройства сравнения кодов. Цифровые компараторы 

Устройства сравнения кодов предназначены для выработки выходного сигнала в случае, когда поступающие на их входы коды двух чисел оказываются одинаковыми.

Числа A и B считаются равными, если разрядные коэффициенты чисел A и B оказываются одинаковыми, то есть, если ai=bi=1 или ai=bi=0. Эти равенства можно привести к одному: . Поскольку это равенство выполняется для каждого разряда, то выходной сигнал Y можно представить в виде логической функции:

где n — число разрядов.

Рисунок 38 Устройства сравнения кодов: а) — структурная схема; б) — минимизированный вариант схемы сравнения в одном разряде; в) — одноразрядный компаратор; г) — УГО 4-разрядного компаратора.

Структурная схема устройства сравнения кодов, составленная на основании приведённого выше уравнения приведена на рисунке 38,а. Выходной сигнал Y=1 будет иметь место только при условии, если будут единичными результаты сравнения во всех разрядах сравниваемых чисел.

Недостатком рассмотренной схемы является большое число входов, так как для работы устройства требуются не только прямые, но и инверсные коды чисел A и В.

На основе законов алгебры логики разработаны устройства сравнения, работающие только с прямыми кодами.

Схема одноразрядного элемента сравнения, построенная на основании этого уравнения, приведена на рисунке 38,б. Функциональная схема, построенная на этих элементах, будет иметь вдвое меньшее число входов.

Цифровые компараторы  являются универсальными элементами сравнения, которые помимо констатации равенства двух чисел, могут установить какое из них больше.

Простейшая задача состоит в сравнении двух одноразрядных чисел. Схема одноразрядного компаратора приведена на рисунке 38,в. При рассмотрении принципа работы схемы следует иметь в виду, что если ai < bi, то ai = 0, а bi = 1 и наоборот.

Для сравнения многоразрядных чисел используется следующий алгоритм. Сначала сравниваются значения старших разрядов. Если они различны, то эти разряды и определяют результат сравнения. Если они равны, то необходимо сравнивать следующие за ними младшие разряды, и т. д.

Цифровые компараторы выпускают в виде отдельных микросхем. Например, К561ИП2 позволяет сравнивать два 4-разрядных числа с определением знака неравенства. УГО этой МС приведено на рисунке 38,г.

Устройство обладает свойством наращиваемости разрядности сравниваемых чисел. Для сравнения, например, 8-разрядных чисел можно применить две четырёхразрядные микросхемы. Для этой цели в МС К561ИП2 предусмотрены три дополнительных входа: A > B, A = B и A > B, к которым подводятся соответствующие выходы микросхемы, выполняющей сравнение младших разрядов. Если используется только одна микросхема, то на вход A = B надо подать лог. «1», а на входы A < B и A > B — дог. «0».

4.5 Преобразователи кодов. Индикаторы

Операция изменения кода числа называется его преобразованием. Интегральные микросхемы, выполняющие эти операции, называются преобразователями кодов. Интегральные микросхемы преобразователей кодов выпускаются только  для наиболее распространённых операций таких как преобразователи двоичного кода в десятичный, двоично-десятичный, шестнадцатеричный, код Грея или обратных, указанным выше, преобразований.

По своей структуре преобразователи  кодов являются дешифраторами, только они преобразуют двоичный код в сигналы не только на одном, но и на нескольких выходах.