Выбрать главу

Есть и еще одна более удивительная особенность пучкового разряда, производимого высокочастотными токами. Для ее наблюдения лучше выполнить обычные выводы катушки в виде металлических штырей, хорошо изолированных эбонитом. Не лишним также будет, если вы изолируете воском или сургучом все трещины и надломы так, чтобы пучки не могли формироваться нигде, кроме вершин штырей. Если соблюдены все условия — а это мы, конечно, оставим на усмотрение экспериментатора — и потенциал вырос до огромного значения, то мы можем получить мощные пучки длиной несколько дюймов почти белые у основания, которые в темноте выглядят как две струи горящего под давлением газа (рисунок 14). Но они не только напоминают пламя, это и есть пламя, поскольку пучки горячие. Конечно, не настолько горячие, как газ, но они могут быть такими, если частота и потенциал будут достаточно высоки. При частоте, скажем, двадцать тысяч колебаний в секунду, тепло ощущается, даже если потенциал не очень велик. Теплота выделяется, конечно, благодаря тому, что молекулы воздуха ударяются о выводы катушки и друг о друга. Так как при нормальном давлении средняя длина свободного движения крайне мала, то, возможно, несмотря на огромную начальную скорость, полученную каждой молекулой при столкновении с контактом, ее продвижение — вследствие столкновения с другими молекулами — затрудняется настолько, что она, не удаляясь от контакта, может ударяться о него много раз подряд. Чем больше частота, тем меньше у молекулы возможностей удалиться, тем более что для такого явления не нужен высокий потенциал; необходима частота — может быть, ее можно даже получить, — при которой одни и те же молекулы будут ударяться о контакт. При таких условиях молекулярный обмен замедляется, и тепло, выделяемое на контакте и возле него, будет сильным. Но если частота будет постоянно возрастать, то количество выделяемого тепла будет уменьшаться по очевидным причинам. В положительном пучке статической машины молекулярный обмен очень быстр, поток всегда движется в одном направлении, столкновений меньше, отсюда теплоотдача должна быть низкой. Всё, что тормозит молекулярный обмен, имеет тенденцию повышать теплоотдачу. Так, если к выводу катушки поднести лампочку, то воздух, содержащийся внутри нее, очень быстро и сильно нагревается. Если к выводу поднести стеклянную трубку так, чтобы поток воздуха поднимал пучок вверх, то из трубки будет вырываться обжигающе горячий воздух. Всё, что попадает в пучок, конечно, быстро нагревается, и появляется возможность использовать этот эффект нагревания для каких-либо целей.

Если поразмышлять над этим интересным явлением горячего пучка, то нельзя не убедиться в том, что подобные процессы происходят в обычном пламени, и кажется странным, что после столетий нашего знакомства с огнем, теперь, в эпоху электрического освещения и отопления, мы признаём, что с незапамятных времен у нас в распоряжении всегда были «электрический свет и тепло». Небезынтересно также поразмышлять о том, что у нас есть способ получить — нехимическим путем — настоящее пламя, которое даст свет и тепло, не уничтожая никаких материалов, безо всяких химических процессов, и чтобы добиться этого, нам нужна лишь методика получения сверхвысоких частот и потенциалов. У меня нет сомнений в том, что если бы потенциал имел достаточную мощность и менялся с достаточной скоростью, пучок, формирующийся на выводе катушки, потерял бы свои электрические свойства и уподобился пламени. Пламя возникает благодаря электростатическому молекулярному воздействию.

Это явление, несомненно, объясняет частые несчастные случаи во время шторма. Хорошо известно, что предметы часто возгораются даже тогда, когда в них не бьет молния. Рассмотрим, как это может происходить. На гвозде в крыше, например, или любом другом выступе, более или менее токопроводящем, или ставшем таковым под дождем, может образоваться мощный пучок. Если в округе ударит молния, образуется огромная разность потенциалов, которая может создать колебания или флуктуации с частотой, возможно, несколько миллионов в секунду. Молекулы воздуха с огромной силой отталкиваются и притягиваются и их удары создают такой нагрев, что возникает пламя. Ясно, что корабль в море таким образом может загореться сразу в нескольких местах. Если мы вспомним, что даже при сравнительно малых частотах, получаемых в динамо-машине, и при напряжении не более ста или двухсот тысяч вольт, тепловой эффект значителен, то можно себе представить, насколько он будет сильнее при частотах и напряжении в несколько раз выше; и высказанное предположение, чтобы не сказать больше, весьма вероятно. Подобные объяснения, возможно, предлагались, но я не уверен, что до настоящего времени тепловой эффект пучка, полученного при высоких частотах, демонстрировался экспериментально, во всяком случае, не так наглядно.

Полная блокировка молекулярного обмена может довести тепловой эффект до такой стадии, что тело начинает светиться. Так, например, если небольшой проводник, а лучше тонкий провод или нить накаливания поместить в сферу, где есть воздух, и соединить с выводом катушки, она может начать светиться. Это явление становится еще более интересным, когда кончик нити быстро крутится и похож на светящуюся воронку (рисунок 15), которая расширяется при увеличении напряжения. Когда потенциал небольшой, конец нити может совершать неправильные движения, быстро переходя от одного к другому, или может описывать эллипс; но если напряжение велико, он всегда вертится по кругу; так же ведет себя тонкий прямой провод, присоединенный свободно к выводу катушки. Эти движения, конечно, вызваны молекулярным воздействием и неравномерностью распределения напряжения вследствие неровности поверхности и асимметрии провода и нити. Если бы провод и нить были абсолютно симметричны и отшлифованы, то движений скорее всего не наблюдалось. То, что наличие движений объясняется указанными причинами, очевидно, следует из того, что они происходят не в определенном направлении, и в сфере, где нет воздуха, они прекращаются и тело не светится, что, видимо, даст нам возможность получения световых эффектов, если мы усовершенствуем методику получения высоких частот.

При использовании катушек в коммерческих целях возникают значительные трудности, так как при использовании высоких частот и напряжения, не выдерживают изоляционные материалы. Обычно катушки достаточно изолированы, чтобы выдержать напряжение между колебаниями, поскольку два провода в двойной оплетке из хлопка и парафина выдерживают напряжение в несколько тысяч вольт; основная трудность заключается в том, чтобы не допустить пробоя вторичной обмотки на первичную обмотку, чему очень способствуют потоки, испускаемые последней. В катушке, конечно, напряжение наиболее велико между секциями, но обычно в больших катушках столько секций, что опасность внезапного пробоя невелика. В этом направлении обычно трудностей не возникает, и, кроме того, опасность внутреннего повреждения катушки сильно ослаблена, скорее всего произойдет постепенное нагревание, которое, достигнув значительной степени, не может остаться незамеченным. Основная задача тогда — препятствовать возникновению разрядов между первичной обмоткой и трубой не только из-за возможного нагрева и повреждения, но также из-за того, что разряды могут понизить напряжение на выводах катушки. Несколько советов по этому поводу будут очень полезны во время опытов с обычной индукционной катушкой.