В настоящее время поиск полимерных состояний ведется на Орбитальном Ускорителе, запущенном в 2049 г. Уже достигнуты первые успехи. Если эти результаты удастся воспроизвести, правила Сарумпета из самого элегантного описания Вселенной быстро станут самым вероятным и, скорее всего, единственно верным…
квантовый феномен, ключевой для понимания многих событий «Лестницы Шильда». Кроме того, понимание процессов декогеренции очень важно для исследования квантовой механики в классическом пределе.
Основная идея состоит в следующем: изолированная квантовая система ведет себя квантовомеханически, демонстрируя интерференционные эффекты, отражающие различных компонент вектора состояния. Например, если состоит из электрона в состоянии суперпозиции равных частей «спин вверх» и «спин вниз», можно провести эксперименты, чувствительные к разности фаз этих компонент. В этом заключается существенное отличие от классического понимания вероятности: нельзя сказать, что у спина электрона 50 %-е шансы оказаться в состоянии «| ↓» и 50 %-е — в состоянии «». Скорее имеет смысл говорить, что обе вероятности сосуществуют, а фаза описывает их взаимодействие. Если бы какая-то из компонент отсутствовала, и понятие фазы не имело бы смысла.
Если система взаимодействует с другой системой таким образом, что различные компоненты вектора состояния влияют на независимо друг от друга, говорят, что две системы В таком случае наблюдения за больше не выявят квантовых эффектов. Система как представляется наблюдателю, «коллапсировала» в состояние, где присутствует только одна компонента исходного вектора состояния. В ранее рассмотренном примере с электроном система ведет себя так, будто для спина вероятность оказаться в состоянии «только ↑» или «только | ↓» составляла в точности 50/50.
Но в действительности такого коллапса не происходит. Если измерения произвести с объединенной системой, А + В, окажется, что она находится в чистом квантовом состоянии, а все компоненты исходного вектора состояния системы А сохранились. Классической физикой потому и пользуются, что полная информация, необходимая для обнаружения квантовых феноменов на макроуровне, нам, как правило, недоступна.
На моем сайте:
http: //gregegan.customer.netspace.net
доступен с тремя экспериментами, в которых показано, как извлечь, казалось бы, потерянную информацию о состоянии запутанной части составной системы при наблюдении за системой в целом.
состояния квантовой геометрии в теории квантовой гравитации, открытые Ли Смолиным и Карло Ровелли. Это понятие — ключевой концептуальный предшественник вымышленной физики «Лестницы Шильда».
Одним из способов описания геометрии пространства выступает описание способа, каким векторы переносятся вдоль любого пути — этот процесс известен под названием «параллельного переноса». В искривленном пространстве параллельный перенос по петле обычно поворачивает вектор относительно исходного направления; известным следствием отсюда выступает тот факт, что при этом сумма углов треугольника отличается от 180 градусов.
Если квантовомеханическая частица переносится по определенному пути в пространстве, начиная его со спином j,компонента которого вдоль оси равна параллельный перенос, вообще говоря, изменит значение спинового состояния частицы. Это явление в квантовой механике соответствует повороту классического вектора. Например, если электрон начинает перемещение со спином ↑, он может перейти в состояние суперпозиции компонент со спинами ↑ и ↓ или же изменить фазу; это зависит от того, какое именно вращение он претерпевает, то есть от кривизны области пространства, которую электрон пересекает. Итак, простым способом определения геометрии пространства видится следующий: взять электрон, перенести его по петле и посмотреть, как изменилось спиновое состояние частицы.