Выбрать главу

5. Одноклеточные прокариотические (то есть не имеющие ядра) организмы делятся на два царства: бактерий и архей. “Потерянный город” населен преимущественно археями, получающими энергию за счет синтеза метана (метаногенеза). Биохимия архей сильно отличается от биохимии сложных (эукариотических) клеток, из которых сложены растения и животные. Среди патогенных и паразитических прокариот не известно ни одной архей — лишь бактерии, биохимия которых имеет гораздо больше общего с биохимией клеток-хозяев. Возможно, архей просто слишком отличаются от других организмов, чтобы сожительствовать с ними. Уникальным исключением мог быть союз архей и бактерии, от которого около двух миллиардов лет назад, вероятно, произошли эукариотические клетки (см. главу 4).

6. Уксус по-латыни — acetum, отсюда корень “ацетил”. В ацетилтиоэфире двухуглеродная основа молекулы уксусной кислоты присоединена к другой органической молекуле через атом серы. Кристиан де Дюв уже два десятилетия указывает на ключевую роль, которую ацетилтиоэфиры должны были играть на ранних этапах эволюции, и в последнее время экспериментаторы наконец начали принимать его доводы всерьез.

7. Подробности этой истории, а также другие сведения о странностях и исключительной важности хемиосмоса я попытался изложить в своей предыдущей книге “Энергия, секс, самоубийство: митохондрии и смысл жизни”.

Глава 2

1. Учитывая, как много возникает новых мутаций, можно задаться вопросом: а почему мы все до сих пор не погибли от их неудержимого накопления? Этот вопрос беспокоит и многих биологов. Если отвечать на него одним словом, то ответ будет “секс”. Объяснения отложим до главы 5.

2. Эта цифра относится к сходству ДНК-последовательностей. Помимо изменений в последовательностях ДНК-букв, после расхождения эволюционных линий людей и шимпанзе в их геномах происходили и другие существенные изменения, такие как удаление фрагментов и слияние хромосом. Так что сходство геномов составляет скорее около 95 %. По сравнению с разницей между людьми и шимпанзе, различия между человеческими популяциями ничтожны: генетически мы все на 99,9 % идентичны. Столь скромная изменчивость отражает сравнительно недавно (по-видимому, около ста пятидесяти тысяч лет назад) преодоленное нашими предками “бутылочное горлышко”. Все расы современного человечества произошли от небольшой африканской популяции, расселившись по планете в ходе ряда миграционных волн.

3. На самом деле в состав молекул РНК вместо тимина (Т) входит немного отличающееся от него другое азотистое основание — урацил (У). Это одно из всего двух различий в строении молекул РНК и ДНК. Второе заключается в том, что в основе РНК лежит немного другой сахар — рибоза (в основе ДНК лежит дезоксирибоза). Нам еще предстоит убедиться в том, что эти два скромных химических различия вызывают огромную функциональную разницу.

4. Природа решает проблему рамки считывания очень просто: последовательно читая каждую молекулу матричной РНК. Молекулы транспортной РНК не пристраиваются к мРНК как поросята к свиноматке, а сменяют друг друга в ходе удивительного автоматизированного процесса. Молекула мРНК проходит сквозь рибосому, как магнитофонная лента вдоль магнитной головки, и записанные в ней кодоны считываются молекулами тРНК один за другим, пока рибосома не доходит до стоп-кодона. Белок при этом синтезируется не в самом конце, а в процессе считывания, постепенно наращиваясь, и, наконец, отделяется от рибосомы, когда она доходит до стоп-кодона. По одной и той же цепочке мРНК могут одновременно двигаться несколько рибосом, и каждая из них по ходу движения синтезирует одну молекулу белка.

5. Названия веществ-предшественников нам здесь не важны, но я все-таки приведу их: если первая буква кодона — Ц, то кодируемая им аминокислота будет производным альфа-кетоглутарата, если А — то оксалоацетата, если Т — пирувата. Наконец, если первая буква — Г, то аминокислота образуется в ходе единственной реакции одного и того же типа из одного из нескольких простых предшественников.

6. Возможно, передача аминокислоты РНК зависит от последовательности РНК-букв. Майкл Ярус и его коллеги из Колорадского университета в Боулдере показали, что небольшие молекулы РНК, содержащие последовательности из того или иного многократно повторенного антикодона, могут связываться с соответствующей аминокислотой в миллион раз успешнее, чем с другими аминокислотами.