Даже в самых простых колониях уже наблюдается фундаментальная разница между двумя типами клеток: соматическими (клетками “сомы”, то есть тела) и клетками зародышевой линии. На эту разницу впервые обратил внимание немецкий эволюционист Август Вейсман (мы познакомились с ним в главе 5) - возможно, самый влиятельный и проницательный дарвинист XIX века после самого Дарвина. Вейсман утверждал, что лишь зародышевая линия, по которой гены передаются из поколения в поколение, потенциально бессмертна, а соматические клетки, которые служат помощниками клеткам зародышевой линии, постоянно расходуются. Эту идею на полвека дискредитировал французский нобелевский лауреат Алексис Каррель, который впоследствии дискредитировал и сам себя - фабрикацией данных. Вейсман же оказался совершенно прав. Открытой им разницей между двумя фундаментальными типами клеток в конечном счете и объясняется смерть всех многоклеточных организмов. Специализация клеток по самой своей природе означает, что лишь некоторые клетки каждого организма могут быть клетками зародышевой линии. Остальные должны играть вспомогательную роль, и единственной выгодой, которую они от этого получат, будет косвенная выгода, связанная с передачей их общих с клетками зародышевой линии генов следующим поколениям. Стоило соматическим клеткам принять свою вспомогательную роль, как их жизнь и смерть были тоже подчинены нуждам клеток зародышевой линии.
Границу между колонией и настоящим многоклеточным организмом лучше всего проводить по степени преданности их клеток делу дифференциации. Некоторые водоросли, как вольвокс, пользуются выгодами совместного существования, но способны и уклоняться от него и жить в форме отдельных клеток. Сохранение самой возможности такой независимости неизбежно ограничивает достижимую степень специализации клеток. Ясно, что столь специализированные клетки, как нейроны, не смогли бы выжить самостоятельно. Настоящие многоклеточные формы жизни доступны только тем клеткам, которым свойственна “готовность” полностью подчинить свою судьбу общим интересам. За их преданностью этим интересам необходимо строго следить, карая смертью за любые попытки вновь обрести независимость. Иначе нельзя. Чтобы убедиться в том, что клеткам многоклеточного организма нельзя позволить поступать по-своему, достаточно вспомнить, к каким бедствиям и сегодня приводит рак - и это после миллиарда лет многоклеточной жизни. Только смерть делает многоклеточную жизнь возможной. Кроме того, разумеется, без смерти не было бы и самой эволюции, ведь без дифференциального выживания не может быть и естественного отбора.
Введение в отношении клеток “смертной казни” за непослушание у первых многоклеточных организмов едва ли потребовало большого эволюционного скачка. Вспомним главу 4: сложные (эукариотические) клетки возникли путем слияния клеток двух типов - клетки-хозяина и поселившихся в ней бактерий, от которых произошли митохондрии - крошечные “электростанции”, вырабатывающие энергию. Свободноживущие предки митохондрий относились к группе бактерий, которые, как и цианобактерии, обладали ферментами каспазами, позволяющими кромсать содержимое клетки. Откуда они взяли их - другой вопрос (возможно, гены этих ферментов были получены ими в результате горизонтального переноса от цианобактерий, или наоборот, цианобактерии получили их от предков митохондрий, или же обе группы унаследовали их от общего предка). Главное то, что митохондрии передали древнейшим эукариотическим клеткам уже собранный и готовый к работе аппарат смерти.
Интересно, могли ли эукариоты столь же успешно развиться в настоящих многоклеточных существ, если бы не унаследовали от бактерий гены каспаз? Так или иначе, когда они обзавелись каспазами, их было уже не остановить. Настоящая многоклеточность возникала у эукариот независимо не меньше пяти раз: у предков красных водорослей, зеленых водорослей, растений, животных и грибов3. Между организмами этих разных форм жизни мало общего, но все они строго следят за своими клетками, карая их смертью за непослушание, и используют для этого весьма сходные наборы ферментов каспаз. Примечательно, что почти во всех случаях в роли главных посредников при вынесении смертного приговора и приведении его в исполнение по-прежнему выступают митохондрии. Они служат многоклеточным организмам своеобразными координационными центрами, собирающими противоречивые сигналы, устраняющими информационный шум и при необходимости включающими аппарат смерти. Итак, хотя клеточная смерть по-прежнему необходима всем без исключения формам многоклеточной жизни, она не потребовала от них особых эволюционных новшеств. Вся необходимая аппаратура была предоставлена митохондриями еще первым эукариотическим клеткам и с тех пор почти не изменилась, лишь была несколько усовершенствована.